IDENTIFICATION AND CHARACTERIZATION OF METALLO-β-LACTAMASES PRODUCING PSEUDOMONAS AERUGINOSA CLINICAL ISOLATES IN AL-AZHER UNIVERSITY HOSPITAL, ASSIUT

Rehab Mousa1,4*, Magdy F. El-Kady2, Asmaa A. A. Hussein3, Amr E. Ahmed4 and Ahmed Osama El-Gendy5

1Pharmacist at Al-Azher University Hospital, Assiut, Egypt
2Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
3Department of Zoonoses, Faculty of Veterinary Medicine, and Dean of Molecular Biology Researches & Studies Institute, Assiut University, Assiut, Egypt
4Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
5Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt

Purpose: Study aimed to determine the frequency of nosocomial infections caused by P. aeruginosa and its distribution among different intensive care units (ICUs), to determine the antibiotic resistance pattern, and to determine the prevalence of Metallo-β-lactamase (MβL) among isolates by phenotypic methods. Methods: A total of 74 P. aeruginosa isolates were identified from different clinical specimens in Al-Azher University Hospital. The antimicrobial susceptibility was tested by disk diffusion (Kirby-Bauer) method and phenotypic screening for MβLs was performed using Combined Disk Test (CDT) and double-disk synergy test (DDST). Results: The frequency of P. aeruginosa isolates from clinical specimens was 18% (74/412). The highest sensitivity was to imipenem 38 isolates (51.3%). The antibiotic sensitivity was in descending manner to meropenem (48.6%) > levofloxacin (28.4%) > ciprofloxacin and ceftazidime (21.6%), while the highest resistance rates were to carbenicillin 70 isolates (94.6%) then gentamicin (70.3%). Out of 74 P. aeruginosa isolates, 51/74 (69%) strains were multidrug resistant (MDR), based on the CDT results 26/74 (35.1%) isolates and by DDST 23/74 (31.1%) isolates were confirmed to be MβL producers. Conclusion: There is a growing risk for isolation of MDR P. aeruginosa among the MBL-producer isolates suggests the need for continuous assessment of antimicrobial susceptibility and surveillance of antibiotic prescription. In addition, infection control measures are needed to prevent further dissemination of these organisms.

INTRODUCTION

Infectious diseases are one of the leading causes of death worldwide due to the development of antimicrobial resistance1. P. aeruginosa is one of the most prevalent opportunistic human pathogen causing several clinical infections including wound infection, pneumonia, urinary tract infections, endocarditis, meningitis, brain abscess, and bacteremia2,3. The increasing inappropriate use of broad-spectrum antibiotics has increased the emergence of multidrug resistant P. aeruginosa (MDRPA) isolates which complicates the
Antimicrobial susceptibility testing

The susceptibility pattern of isolates to different antibiotics were examined using disk diffusion method (Kirby-Bauer) on Muller-Hinton agar plates according to Clinical and Laboratory Standards Institute (CLSI). The antimicrobial disks were included: imipenem (10 µg), meropenem (10 µg), ceftazidime (30 µg), carbenicillin (100 µg), amikacin (30 µg), gentamicin (10 µg), Ciprofloxacin (5 µg), Levofloxacin (5 µg). Inoculated plates and incubated overnight. The zones of inhibition were measured and interpreted.

MIC Determination for P. aeruginosa isolates by Epsilometer test (E test)

Determination of MIC P. aeruginosa isolates by Imipenem (IP)-E test and Meropenem (MP)-E test (bioMérieux SA, Marcy l'Etoile, France). Results were interpreted using CLSI (2016) breakpoints. The breakpoints for imipenem and meropenem were as follows: susceptible (S) \(\leq 4 \) µg/ml and resistant (R) \(\geq 16 \) µg/ml.

MBL screening and confirmation by phenotypic methods

Combination disk diffusion test (CDDT) was used for phenotypic detection of MBLs producing P. aeruginosa strains. In brief a 0.5 M EDTA solution was prepared and then was added to 10 µg imipenem and meropenem disks to obtain a concentration of 750 µg. The IPM and IPM-EDTA disks were placed on the plate which were inoculated with P. aeruginosa. The inhibition zones of these disks with and without EDTA solution were compared after 16–18 hrs of incubation in air at 35°C. An increase of \(\geq 7 \) in the zone diameter for IPM in the presence of EDTA was considered as positive result.

Double-disk synergy test (DDST), in brief a 10 µl of 0.5 M (750 µg) EDTA solution was added to filter paper blank disc, was placed on the surface of the agar plate. IPM disc (10 µg) or MEM disc (10 µg) was placed 13 mm center to center from the EDTA disc. The plates were incubated for 16-18 hrs at 35°C. Enhancement of the inhibition zone in the area between the imipenem (or meropenem) disc and the EDTA disk in comparison with the inhibition zone on the far side of the drug was interpreted as positive for MBL production.
RESULTS AND DISCUSSION

Results
Isolation and Identification of pathogens were done on specimens according to standard procedures. 412 isolates from different clinical samples were collected. Out of 412 isolates, Enterobacteriaceae sp. were the most common isolates detected, they were 226 (54.85%). The incidence of other microorganisms was P. aeruginosa 74 (17.96%), Staphylococci sp. 98 (23.79%) and Candida sp. 14 (3.4%). Microbial isolates are shown in table 1.

Table 1: Distribution of isolated pathogens among total 412 clinical specimens.

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of isolates</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>74</td>
<td>17.96%</td>
</tr>
<tr>
<td>Enterobacteriaceae sp.</td>
<td>226</td>
<td>54.85%</td>
</tr>
<tr>
<td>Staphylococci sp.</td>
<td>98</td>
<td>23.79%</td>
</tr>
<tr>
<td>Candida sp.</td>
<td>14</td>
<td>3.4%</td>
</tr>
<tr>
<td>Total</td>
<td>412</td>
<td>100%</td>
</tr>
</tbody>
</table>

Distribution of *P. aeruginosa* isolates among different wards/ICUs. *P. aeruginosa* isolates were mostly isolated from Urology department representing 32.4% (24/74) from total *P. aeruginosa* isolates, followed by General ICU representing 24.3% (18/74), Chest ICU and neurology ICU representing 10.8% (8/74), internal medicine ICU 9.5% (7/74), pediatric ICU 6.8% (5/74), and then postoperative ICU representing 5.4% (4/74) are shown in figure 1.

Antimicrobial susceptibility. The highest sensitivity was to imipenem 38 isolates (51.3%). The antibiotic sensitivity then decrease in descending manner to be meropenem (48.6%) > levofloxacin (28.4%) > ciprofloxacin and ceftazidime (21.6%) while the highest resistance rates were to carbenicillin 70 isolates (94.6%) then gentamicin (70.3%). The rate of resistance to antibiotics is shown in the table (2). Out of 74 *P. aeruginosa* isolates, 51 (69%) strains were MDR and 23 (32%) strains were non-MDR strains.

Determination for *P. aeruginosa* isolates. All *P. aeruginosa* isolates (74 isolates) were tested for accurate determination of their MIC using the Imipenem (IP)-E test and Meropenem (MP)-E test strips. Results were interpreted using the breakpoints of CLSI (2016) as shown in figure 2.

![Distribution of P. aeruginosa isolates among different wards/ICUs.](image-url)
Table 2: Antimicrobial susceptibility pattern of 74 P. aeruginosa urine isolates.

<table>
<thead>
<tr>
<th>Antimicrobial drug</th>
<th>No. of resistant isolates (%)</th>
<th>No. of intermediate isolates (%)</th>
<th>No. of sensitive isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imipenem</td>
<td>27 (36.5%)</td>
<td>9 (12.2%)</td>
<td>38 (51.3%)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>29 (39.2%)</td>
<td>9 (12.2%)</td>
<td>36 (48.6%)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>49 (66.2%)</td>
<td>9 (12.2%)</td>
<td>16 (21.6%)</td>
</tr>
<tr>
<td>Amikacin</td>
<td>43 (58.1%)</td>
<td>19 (25.7%)</td>
<td>12 (16.2%)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>52 (70.3%)</td>
<td>9 (12.2%)</td>
<td>13 (17.5%)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>51 (68.9%)</td>
<td>7 (9.5%)</td>
<td>16 (21.6%)</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>46 (62.1%)</td>
<td>7 (9.5%)</td>
<td>21 (28.4%)</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>70 (94.6%)</td>
<td>1 (1.4%)</td>
<td>3 (4%)</td>
</tr>
</tbody>
</table>

Fig. 2: Results of MIC of Imipenem and Meropenem using (IP)-E test and (MP)-E test strips in 74 P. aeruginosa isolates.

Detection of MBL by CD. Out of the 74 P. aeruginosa isolates, 26 (35.1%) and 25 isolates (33.8%) showed an increase in the zone of inhibition of about 7 mm or more around IPM-EDTA and MEM-EDTA disks compared to IPM and MEM disk alone (positive for MβLs production), respectively are shown in the figure 3 and table 3.

Detection of MBL by DDST. Out of the total 74 P. aeruginosa isolates, 23 (31.1%) and 21 isolates (28.4%) showed positive results for MβLs production using IPM and MEM, respectively, are shown in the figure 4 and table 4, but all IP and MP E-test susceptible P. aeruginosa isolates showed negative results of DDST.

Discussion
This study included patients suffering from nosocomial UTIs over a period of 17 months from November 2015 to April 2017. The aerobic pathogens causing UTI were identified. The antibiotic resistance pattern, for P. aeruginosa isolates was performed, the frequency of multidrug resistance among nosocomial P. aeruginosa infections, and carbapenem antibiotics sensitivity pattern of P. aeruginosa isolates were determined. Phenotypic detection of Metallo-β-lactamase production.
Table 3: Results of CD test of all 74 P. aeruginosa isolates using IPM (10 µg) and MEM (10 µg) for MβL detection.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CDT using IPM</th>
<th>CDT using MPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>No. (%)</td>
<td>No. (%)</td>
</tr>
<tr>
<td>Total No of P. aeruginosa isolates</td>
<td>26 (35.1%)</td>
<td>48 (64.9%)</td>
</tr>
<tr>
<td>(n= 74)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3: Detection of MβL in carbapenem resistant P. aeruginosa isolate by CD test (+Ve).

Table 4: P. aeruginosa isolates using IPM (10 µg) and MEM (10 µg) for MβL detection.

<table>
<thead>
<tr>
<th>Sample</th>
<th>DDST using IPM</th>
<th>DDST using MPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>No. (%)</td>
<td>No. (%)</td>
</tr>
<tr>
<td>Total No of P. aeruginosa isolates</td>
<td>23 (31.1%)</td>
<td>51 (68.1%)</td>
</tr>
<tr>
<td>(n= 74)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4: Detection of MβL in carbapenem resistant P. aeruginosa isolate by DDST (+Ve).
During the study period, rate of isolation of nosocomial *P. aeruginosa* urine isolates was 17.96% of isolated uropathogens. This finding agreed to some extent with that reported by Gad et al.12 who identified *P. aeruginosa* isolates in 18.2% of the clinical samples and Wassif et al.13 who identified *P. aeruginosa* isolates in 20.7% of different clinical samples. This rate was much higher than that reported by Aminizadeh and Kashi14, where the rate of incidence of *P. aeruginosa* in UTI was 13.2%. In Malaysia, also Abbas et al.15 who identified *P. aeruginosa* isolates in (12.5%) of the clinical samples and Mohammedi et al.16 who identified *P. aeruginosa* isolates in (12.35%) of different clinical samples. However, these results were less than those found by Mansour et al.12, who reported that the rate of isolation of *Ps. aeruginosa* from patient samples in Egypt and Saudi Arabia, was 32.8% and 30.0% respectively.

The leading uropathogens in this study were *Enterobacteriaceae* sp. (54.85%). This was comparable to that reported in Sudan reported by Shareef and Yagoub18 (68.01%) and to Milan and Ivan19 in Serbia (64%). There were much higher rates reported in Nepal and Pakistan by Chandrashekharchar et al.20 and Khan et al.21. On the other hand rates ranging from (25) to (37.4%) were reported in Japan and Turkey by Shigemura et al.22 and Savas et al.23.

In this study *Candida* sp. forms (3.4%) of isolated pathogens. This rate was more or less similar to (3.7%) found in India by Hasan et al.24, lower than reported in Kuwait (16.5%) by Al Benwan et al.25. In Saudi Arabia, the frequency of nosocomial uro-pathogens isolates was studied by Alzohairy and Khadri26, where they showed that *E. coli* was the predominant pathogen and *Klebsiella* spp. were the second common organism in hospital-acquired infection followed by *P. aeruginosa* strains.

In our study, the highest number of *P. aeruginosa* strains were recovered from Urology department followed by General ICU then chest ICU and neurology ICU with percentages of 32.4% (24/74), 24.3% (18/74), 10.8% (8/74) and 10.8% (8/74), respectively (Fig. 1). These findings disagree to some extent with those of Juvanbakht et al.27 who reported that Postoperative ICU were the most frequent category of infection (46.5%) in Imam Reza hospital, followed by Urology department (22.7%), and General ICU (9%). These differences may be due to difference in the number of patients, place of study and genetic susceptibility.

The present study revealed that the resistance rates of *P. aeruginosa* were ranging from very high (94.6%) to carbenicillin to moderate to ceftazidime (66.2%) and high incidence of resistance can explain by our routine use of the drug (Table 2). These high values of resistance which were observed were comparable to those of the reports from Gujarat, with a resistance value of (75%)28. Also, our results were consistent with data of Fazlul et al.29, who stated that nosocomial *P. aeruginosa* urine isolates were highly resistant to ceftazidime (61.9%).

In our study, the rate of resistance of *P. aeruginosa* urine isolates to imipenem was (36.5%) and to meropenem was (39.2%) in the same table. Our results were identical with those reported by Ashour and El-Sharif30 in Egypt who concluded that Acinetobacter and *Pseudomonas* species exhibited the highest resistance levels to imipenem (37.03%) among other Gram-negative organisms.

Our results were higher than those reported by Wang et al.31 documented low rate of imipenem and meropenem-resistance among *P. aeruginosa*, it was (13%) and (16%) respectively. Queenan et al.32 stated that rate of imipenem and meropenem resistance among *P. aeruginosa* isolated from patients with UTIs was (18%) and (22%), respectively. Resistance rates to carbapenems may vary and depends on local antibiotic policies, origin of the strains, and geographic location33.

Our study showed marked increase in imipenem resistance (39.2%) which may be attributed to increased use of imipenem in the hospital. This rate of carbapenem resistance reflects a threat limiting the treatment options in our hospitals. This can be explained in part by the increase in consumption of antimicrobial agents in the last decade leading to a selective pressure of antibiotics on *P. aeruginosa* and consequently the bacteria modify the resistant mechanisms. A similar high rate of resistance
has been reported in many developing countries worldwide.34

The resistance rate of \textit{P. aeruginosa} to gentamicin was (70.3\%) and amikacin was (58.1\%). In agreement with our result, Fazlul \textit{et al.}29, observed that the resistance of nosocomial \textit{P. aeruginosa} urine isolates to gentamicin and amikacin was (75\%) and (48\%) respectively. Ramirez and Tolmasky35 reported much high rate of resistance to gentamicin (81\%). Sibi \textit{et al.}36 found that resistance of \textit{P. aeruginosa} to gentamicin and amikacin was (79\%) and (51\%), respectively. Zhao \textit{et al.}37 found that the resistance rate of \textit{P. aeruginosa} to gentamicin and amikacin was (77\%) and (61\%), respectively.

Fluoroquinolones are most commonly used in urinary tract infections. But resistance to fluoroquinolones is increasing. The resistance rate to ciprofloxacin was (68.9\%) and levofloxacin was (62.2\%). These results were similar to those reported by Gad \textit{et al.}12, who found that most of the \textit{P. aeruginosa} isolates were resistant to both levofloxacin (64\%), and ciprofloxacin (62\%). Abbas \textit{et al.}15 also found that most of the \textit{P. aeruginosa} isolates were resistant to levofloxacin (69.4\%), and ciprofloxacin (67.1\%). These results disagreed with the study of Kobayashi \textit{et al.}38 also found that (22.4\%) of the \textit{P. aeruginosa} isolates were resistant to ciprofloxacin. These rates were lower than that reported by Manjunath \textit{et al.}39 in India where the rate of ciprofloxacin resistance was (85\%).

In our study, the prevalence of MDR strains among \textit{P. aeruginosa} urine isolates was 51 (69\%). Our result was coincides with studies that were done by Mohanasoundaram40 who found that, the percentage of the MDR in the \textit{P. aeruginosa} strains had increased from (64\%) in 2008 to (71\%) in 2010; Alzohaairy and Khadri26 found that, \textit{P. aeruginosa} (58.3\%) was the most common MDR uro-pathogens followed by \textit{E. faecalis} (55.5\%) and \textit{E. coli} (53.6\%). Our results was higher than Kirikae \textit{et al.}41 who reported that the percentage of MDR-\textit{P. aeruginosa} isolates in the urinary tract was significantly greater in both medical facilities and clinical laboratories, where the percentage of MDR strains was (43.8\%) and (41.6\%), respectively. However, the result was lower than (76\%) reported by El-Shoumy \textit{et al.}32.

In this study, phenotypic detection of carbapenemase producing \textit{P. aeruginosa} isolates was done by determination of MICs of carbapenems using E-test. IP & MP E-test identified 27 carbapenemase-producing \textit{P. aeruginosa} isolates. IP E-test results showed that 36.5\% (27/74) of \textit{P. aeruginosa} isolates were imipenem resistant (MIC above 16 µg/ml), while 6.8\% (5/74) of the isolates showed imipenem intermediate susceptibility (MIC 8 µg/ml) and 56.7\% (42/74) of the isolates were imipenem sensitive (MIC below 4 µg/ml) (Fig. 2). These results were similar to those reported by Arora \textit{et al.}43 who found that rate of imipenem-resistant among \textit{P. aeruginosa} urine isolates was (37\%). In the Middle East the occurrence of imipenem resistant \textit{P. aeruginosa} is alarmingly recognized. In Saudi Arabia, the resistance rate of \textit{P. aeruginosa} to imipenem was increased to (38.57\%) in 201144.

MP E-test results showed that 39.2\% (29/74) of \textit{P. aeruginosa} isolates were meropenem resistant (MIC above 16 µg/ml), while 2.7\% (2/74) of the isolates showed meropenem intermediate susceptibility (MIC 8 µg/ml) and 58.1\% (43/74) of the isolates were meropenem sensitive (MIC below 4 µg/ml). In agreement with our results, a study in Egypt reported a resistance rate of (37.7\%) to meropenem among \textit{P. aeruginosa} isolated from hospitalized cancer patients45. This is explained by the differences in the pattern of antibiotic prescription and usage between the two studies.

In our study, CDT and DDST were done as phenotypic methods for detection of MBL-producing \textit{P. aeruginosa} isolates including both carbapenem susceptible and non-susceptible strains. By CDT, 35.1\% (26/74) and 33.8\% (25/74) of \textit{P. aeruginosa} isolates were MBL producers phenotypically by IPM/EDTA and MEM/EDTA combined disks, respectively (Table 3). These findings are similar to high extent to the prevalence of MBL producers in Egyptian study which was (32.3\%) by Mansour \textit{et al.}17, from UK (38.3\%) by Ellington \textit{et al.}46.

Regarding the DDST, 31.1\% (23/74) and 28.4\% (21/74) of \textit{P. aeruginosa} isolates were
MβL producers phenotypically by IPM and MEM, respectively (Table 4). These results are in accordance with those of other studies in Egypt by Mansour et al.17 who reported that the prevalence of MβL producers in Egyptian study was (32.3%). In 2012, Polotto et al.47 surveyed 56 P. aeruginosa isolates by disk diffusion method and showed that 54/56 (96.4%) of isolates were resistant to imipenem. They also showed that 17 /56 (30.3%) of imipenem-resistant strains were positive for production of MBL.

Conclusion
This study shows that there is increasing prevalence of β-lactamase producing P. aeruginosa in nosocomial infections in AL-Azher University Hospital. This is a major cause of concern as this implies that more and more instances of multidrug resistance are emerging. This leads to an overall negative impact on the health concerns and amounts to increasing difficulty in combating disease. It is recommended that awareness about antibiotic use and abuse be made a priority and measures of curbing unchecked use of prescription antibiotics be put into place. Establishment of infection control programs will help to lower the incidence of resistance in P. aeruginosa.

REFERENCES
7- M. R. Franco, H. H. Caiiaffa-Filho, M. N. Burattini and F. Rossi, "Metallobeta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian University Hospital", Clinics (Sao Paulo), 65 (9), 825-829 (2010).

Rehab Mousa, et al.

تحديد وتوصيف الميثات Rigor mortis المنتج من عزلات ميكروبات السيدوموناس أيرجينوزا السريرية في المستشفى الأزهر الجامعي

 rahab salah el din mohamad, 4- 4- ديلا نقاشي - أسماء عبد الناصر حسن
 عمر السيد أحمد 1- أحمد أسامة الجندي

intendo يستعين طب الأزهر الجامعي في معين أسوتوت، أسوتوت، مصر

قسم أمراض الدواغن، كلية الطب الباطني، جامعة بني سويف، بني سويف، مصر

قسم الأمراض المشتركة، كلية الطب الباطني، وعميد معهد بحوث دراسات البيولوجيا الجزيئية، جامعة أسوتوت، مصر

قسم الريبوتولوجيا وعلوم الحياة، كلية الدراسات والعلوم المقدمة، جامعة بني سويف، بني سويف، مصر

قسم الميكروبيولوجيا والمناعة، كلية الصيدلة، جامعة بني سويف، بني سويف، مصر

أجريت هذه الدراسة في تحديد نسبة انتشار العدوى ببكتريا السيدوموناس أيرجينوزا في مرضى العدوى المكتسبة في وحدات العناية المركزية المختلفة ومن المسالك البولية في مستشفى الأزهر الجامعي بأسيوط، ثم عزل (71) عزلة من ميكروبات السيدوموناس أيرجينوزا بنسبة 18% من الميكروبات المختلفة (19) ، وكانت أعلى نسبة من السيدوموناس أيرجينوزا تم العثور عليها في قسم المسالك البولية (46%) وحدة العناية المركزية عامة (24%)، ووحدة العناية المركزية الصدر الباطني (24%) ووحدة العناية المركزية العصبية (10%)، ووحدة العناية المركزية الباطني (9.5%)، ووحدة العناية المركزية الباطني أطفال (5.4%)، وواحدة العناية المركزية بعد العمليات (10.2%).

تم دراسة حساسية السيدوموناس أيرجينوزا المعزولة للمضادات الحيوية المختلفة وasiaf طريقة الاستشارة القسري، أظهر الاختبار أن (70%) كانت مقاومة للكاربينيسيلين، (37%) مقاومة للجيماينيسين، (51%) مقاومة لكل من سيريفولوكساسين، (46%) مقاومة لسيكلوزومي، (46%) مقاومة LSESI ميتو. تم تحديد مدى تركيز مثبط MIC للمضادات الحيوية للايميبينيم والميرويبين بإستخدام اختبار IP-E وMP-E ونتائج اختبارات MP-E. أظهرت نتائج اختبار القصرين 36% من سلالات السيدوموناس أيرجينوزا مقاومة للايميبينيم. ونتائج اختبارات MP-E أن 39% من سلالات السيدوموناس أيرجينوزا مقاومة للميرويبين. وقد تم أيضاً الكشف الظاهري لازمات الميثات للايميبينيم في جميع مسلاسل السيدوموناس أيرجينوزا بعد طرق علاج مختلفة منها: اختبار القصرين المشتركة واختبار القصرين مزدوج التأزر باستخدام قسح المضادات الحيوية إيميبينيم والميرويبين ذات التركيز 10 ميكروجرام.