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Dexamethasone is a fluorinated steroid and a synthetic member of glucocorticoids. It is an 

approved medication for inflammatory and allergic disorders. Also, it is clinically used in high 

doses to manage pain associated with metastatic osteolytic lesions. Furthermore, it has a wide 

array of side effects, particularly at high doses and after prolonged consumption, like; 

hypertension, hyperglycemia, and dyslipidemia. It is a promising tool for studying the 

underlying mechanisms of metabolic syndrome and insulin resistance. This review article 

discusses metabolic syndrome and insulin signaling. In addition, this review article will discuss 

metabolic-dexamethasone effects on the skeletal muscle, liver, adipose tissue, pancreas, brain, 

and the cardiovascular system, its underlying mechanisms of action, and the benefits of use, in 

comparison to the other dietary and chemical models of insulin resistance and type 2 diabetes, 

to identify new potential pharmacological treatments of the metabolic syndrome and its related 

complications. 
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INTRODUCTION 

 

In 1948, it was the beginning of the use of 

cortisone. The therapist used it to treat a 

desperately ill long-bedridden 29-year-old 

woman with severe rheumatoid arthritis. Three 

days after injections, she miraculously 

recovered and even went shopping. That single 

event initiated the cortisone era1. Due to salt 

and water retention of cortisone, several 

attempts tried to synthesize derivatives with 

higher glucocorticoid- and lower 

mineralocorticoid effects, which led to the 

discovery of dexamethasone in 1958 by a group 

of chemists at Merk Corporation. 

Dexamethasone is a fluorinated steroid and a 

synthetic member of glucocorticoids, which has 

anti-inflammatory activity 25-times higher than 

hydrocortisone and long action duration2 – 

(figure1)  

 

 

Fig. 1: Dexamethasone; 1-dehydro-9α-fluoro-16α-methyl-hydrocortisone156. 
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Dexamethasone has a long history of 

clinical uses in treating inflammatory and 

autoimmune disorders, cancer, and their related 

nausea and vomiting3. In addition, reducing 

aortic plaque formation is accomplished by 

dexamethasone uses4, postoperative facial 

edema5&6, and in the treatment of asthma and 

chronic obstructive pulmonary disease7&8. 

Moreover, dexamethasone has been present to 

ameliorate the severe respiratory complications 

associated with COVID-19 infection9. 

Despite these benefits, long-term use of 

dexamethasone-high-doses leads to serious 

systemic and metabolic side effects such as 

hypertension10, hyperglycemia11, 

dyslipidemia4&12&13, osteoporosis14&15, and 

immunosuppression16. These side effects are 

highly correlated with the glucocorticoid 

activity of dexamethasone17 and led to using 

dexamethasone as an experimental model of 

insulin resistance18&19 and metabolic 

syndrome17. 

 

Metabolic syndrome 

Metabolic syndrome is a collection of 

disorders related to metabolic disturbances such 

as insulin resistance, hyperglycemia, 

dyslipidemia, and hypertension20&21. This 

syndrome is also known as dysmetabolic, 

insulin resistance, and X-syndrome22. The 

prevalence of metabolic syndrome rapidly 

increases worldwide, even in children23, due to 

widespread of sedentary lifestyles and 

consumption of high calories fast foods24. 

Patients with this syndrome usually suffer from 

an increased risk of stroke, cardiovascular 

disorders25, and different types of cancer26. 

Noteworthy, insulin resistance is considered the 

main component and the cornerstone of this 

syndrome27. 

 

Insulin signaling and glucose uptake 

Pancreatic β-cells release insulin in 

response to hyperglycemia in-vitro28 and in-

vivo29. Insulin binding to its receptor on the cell 

membrane initiates a series of intracellular 

changes secondary to autophosphorylation of 

the insulin receptor (IR)-tyrosine residues and 

subsequently conformational changes30. 

Activated IR stimulates the insulin-receptor-

substrate-1 (IRS-1) through tyrosine 

phosphorylation31. This phosphorylation forms 

a docking site to Src homology-2 (SH-2) 

domain-containing proteins like 

phosphatidylinositol 3-kinase (PI3K)32. 

Activated PI3K mediates phosphorylation of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), 

which activates protein kinase B (Akt) [33, 34]. 

Then, Akt induces the translocation of glucose 

transporters (GLUTs) from their vesicles in the 

cytoplasm to the cell membrane, facilitating 

glucose entrance35 (figure 2). 

 

 

Fig. 2: Insulin signaling pathways and sites of dexamethasone interaction. 
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Metabolic effects of dexamethasone and 

glucocorticoids on different body organs  

Skeletal muscles 

Skeletal and cardiac muscles consume 

80% of insulin-induced glucose uptake in the 

human body36. In skeletal muscles, 

glucocorticoids induce insulin resistance by 

reducing the transcription of IRS-1 and the 

extracellular signal-related kinase-337&38 while 

increasing the transcription of proteins that 

obstruct insulin action like; protein tyrosine 

phosphatase type-1B (PTP1B) and p38 

mitogen-activated protein kinase (p38 MAPK) 

[39]. In the same context, treating mice with 

dexamethasone causes significant reductions in 

Akt activity40. Dexamethasone also decreases 

glucose transporter-4 (GLUT4) translocation, 

an effect mediated by inhibition of adenosine 

monophosphate-activated protein kinase 

(AMPK)-Rab-GTPase–activating proteins 

(TBC1D1) phosphorylation40  

TBC1D1 is a Rab GTPase-activating 

protein, expressed abundantly in skeletal 

muscles41, and can be phosphorylated at Ser 

237 by AMPK42. An activated state of Rab-

GTP promotes translocation of GLUT4 to the 

cell membrane, thus enhancing the capture of 

glucose in skeletal muscles43-45 (figure 3).  

 

Liver 

In the liver, dexamethasone down-

regulates the gluconeogenic enzymes like 

glucose-6-phosphatase catalytic subunit 

(G6PC), pyruvate carboxylase (PC), and 

cytosolic form of phosphoenolpyruvate 

carboxykinase1 (PCK1). However, it enhances 

the mitochondrial subtype (PCK2)46. On the 

contrary, the levels of IRS-1 and PI3K oddly 

increase while their phosphorylation and 

activities sharply decrease47. 

In the same context, dexamethasone 

elevates the hepatic levels of triglycerides and 

induces hepatic steatosis even after a relatively 

short time interval of treatment48&49. In human 

hepatoma cell lines (Huh7), dexamethasone 

inhibits the leptin-induced Janus kinase/signal 

transducers and activators of the transcription 

(JAK2/STAT3) pathway through the activation 

of MAPK cascades50. This inhibitory action 

impairs the regulatory effect of leptin on food 

intake and energy expenditure.  

Moreover, Feng and his collaborators 

showed that dexamethasone-induced hepatic 

steatosis through upregulation of the mitogen-

activated protein kinase phosphatase-3 (MKP-

3). This induction of MKP-3 expression is 

dependent on forkhead box protein- O1, 

(FOXO1)51, (figure 3). 

 

Fig. 3: Summary of dexamethasone-metabolic effects on different body organs. 
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Adipose tissue 

Glucocorticoids are highly active in 

adipose tissue due to the high expression level 

of glucocorticoid receptors. Glucocorticoids 

enhance visceral adiposity while inducing loss 

of subcutaneous fatty deposits in the arms and 

legs52. 

Dexamethasone induces lipolysis of 

subcutaneous fat by increasing the expression 

of the hormone-sensitive lipase and mediates 

the hydrolysis of the triacylglycerol of the lipid 

droplet of adipocytes into glycerol and non-

esterified fatty acids53. In addition, 

dexamethasone induces visceral adiposity via 

activating lipoprotein lipase54. 

Incubation of adipose tissue of rat 

epididymis with dexamethasone for 24 hrs 

causes a marked decline in the IRS-1, a slight 

decrease in PI3K, and a significant reduction in 

phosphorylated Akt content, whereas IRS-2 

content increases55. Furthermore, this 24-hrs 

incubation with dexamethasone significantly 

reduces the cell-surface insulin binding while 

increasing the lipolysis and glycerol release53,56. 

In contrast, the short incubation (two to eight 

hrs) with dexamethasone does not show 

changes in the IRS-1, PI3K, or phosphorylated 

Akt content55. In the same context, 

dexamethasone enhances the accumulation of 

fat deposits in skeletal muscles provoking 

insulin resistance57-59 (figure 3). 

 

Pancreas 

Treatment of rats with dexamethasone 

(0.5-1 mg/kg) activates and raises the IRS-

2/PI3K/Akt/p70S6K pathway in the pancreatic 

β-cells leading to increased cellular 

proliferation60&61. However, dexamethasone, in 

a dose of (0.1 µM for 72 hrs) boosts p53 

protein expression in rat pancreatic cells 

(insulinoma INS-1 cells). This induction 

increases Bax but decreases B-cell lymphoma 2 

(Bcl2) protein expressions and liberates 

cytochrome c from the mitochondrial 

membrane62, leading to enhancement of 

caspase-3 activity and apoptosis63.  

   Notably, rats treated with dexamethasone had 

shown an increase in pancreatic somatostatin 

gene expression and protein content64. 

Although Somatostatin inhibits the pancreatic 

α- and β-cell functions, dexamethasone 

administration results in hyperglucagonemia 

and hyperinsulinemia (figure 3). 

 

 

Heart and blood vessels 

Unlike skeletal muscles, cardiac muscles 

require prolonged exposure to dexamethasone 

to become insulin resistant65&66.  

Treatment of cardiomyocytes with 

dexamethasone for two hrs activates stress 

kinases such as AMPK and MAPK, which 

phosphorylates the heat shock protein (HSP)25 

and causes rearrangement of actin 

cytoskeleton65. In addition, dexamethasone 

increases the luminal lipoprotein lipase (LPL) 

activity leading to a breakdown of triglycerides 

and librates of free fatty acids, which impair 

cardiac functions65. 

Moreover, dexamethasone can impair 

cardiac functions and induce left ventricular 

hypertrophy by elevating the cardiac glycogen 

content67. Dexamethasone elevated cardiac 

glycogen levels by decreasing glycolysis and 

increasing glucose uptake by GLUT4 and 

glycogen synthesis66. GLUT4 activity increases 

secondary to activation of AMPK by 

dexamethasone66,68. 

On the other hand, dexamethasone induces 

dose-dependent changes in the aorta. A mild to 

severe thickening of tunica intima and tunica 

media was produced by (1-16 mg/kg) 

dexamethasone doses, leading to the 

development of severe arteriosclerosis48 (figure 

3) 

 

Brain 

Like other organs, the brain also is insulin-

sensitive69. Most brain cells express insulin 

receptors but with different densities70&71. The 

brain consumes 20% of blood glucose, despite 

its weight and size (2% of total body weight)72. 

Treatment of rats with corticosteroids does 

not affect the expression level of insulin 

receptors but decreases its activity leading to 

decreased Akt activity and GLUT4 

translocation73. These changes are associated 

with plasticity decline and dysfunction of the 

neuronal hippocampal cells73&74. 

Dexamethasone reduces glycogen content 

and modulates the gene expression of 

neuropeptides and neurotransmitters in the 

hypothalamus leading to disturbance of animal 

eating behavior75 (figure 3). 

 

Other metabolic effects of dexamethasone 

and glucocorticoids 

Hypertension is a common side effect of 
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dexamethasone10. However, the precise 

mechanism of dexamethasone-induced 

hypertension is unclear76&77, but it is most 

likely to be mediated by peripheral rather than 

central effects because dexamethasone does not 

readily pass the blood-brain barrier78. 

Dexamethasone can induce hypertension 

via mineralocorticoid receptor activation, 

leading to renal sodium and water 

retention78&80. In addition, dexamethasone can 

enhance angiotensin II production by 

increasing angiotensin II converting enzyme 

activity81 and can up-regulate the expression of 

the angiotensin II type 1 receptor in the 

vascular smooth muscle cells82. Furthermore, 

dexamethasone increases catecholamine 

biosynthesis in the adrenal medulla and 

enhances smooth muscle contractility response 

to adrenergic agonists83&84. 

In the same context, dexamethasone can 

quench the nitric oxide content of endothelial 

cells of the blood vessels through the 

production of reactive oxygen species such as 

superoxide85&86. Therefore, using anti-oxidants 

can reverse dexamethasone-induced 

hypertension87. 

 

Dose- and time-dependent metabolic effects 

of dexamethasone 

Low-dose-dexamethasone (0.005 

mg/kg/day) significantly induced insulin 

resistance after seven days of treatment, 

hypertension after 15 days, and dyslipidemia 

after 28 days in Wistar rats88. Changes in the 

body, liver, heart and kidney weight even after 

28 days had not been seen. Also, blood glucose 

levels remained normal during the same period 

of treatment. Insulin resistance may attribute to 

dexamethasone-induced endothelial 

dysfunction88. 

Dexamethasone (0.13 mg/kg/day) 

provoked insulin resistance, hyperinsulinemia, 

and elevated plasma-free fatty acids from 4 -13 

days. Blood glucose levels stayed normal over 

the 13-days-period of study. Food intake and 

weight of the body and pancreas significantly 

decreased after 13 days of treatment89. 

Dexamethasone (1 mg/kg/day) had 

impaired glucose tolerance and liver functions 

and induced dyslipidemia after eight days of 

treatment in rats. Body weights decreased while 

liver weights increased compared to the control 

group. Blood glucose levels and weight of the 

heart, pancreas, and kidney remained normal90. 

Dexamethasone (10 mg/kg/day) has 

induced hyperinsulinemia, dyslipidemia, 

hepatomegaly, liver steatosis, cardiac injury, 

and proteinuria after seven days of treatment. 

Body weights decreased while blood glucose 

levels remained normal. The mortality rate in 

this model was 22 % when dexamethasone was 

injected by the subcutaneous route, whereas the 

intraperitoneal route induced death in 80% of 

animals (data under publication) (Table 1). 

 

Dexamethasone vs. dietary models of insulin 

resistance and metabolic syndrome 

Dietary models of insulin resistance 

include the use of high-fructose, high-sucrose, 

high-fat, and high-fructose-high-fat diets. 

Fructose is a monosaccharide that 

mediates the accumulation of triglycerides and 

cholesterol if consumed in high amounts91&92. 

High-fructose-diet regimens usually contain 10 

to 60% fructose of the total content93-95. These 

regimens can prompt metabolic syndrome 

within 3-16 weeks93-97. This model produced 

overt high visceral adiposity, 

hypertriglyceridemia, hyperlipidemia, 

hypertension, glucose intolerance, insulin 

resistance, hyperuricemia, oxidative stress, and 

inflammatory markers93-96,98&99. 

Sucrose is a disaccharide of fructose and 

glucose100. Fructose is the main component of 

sucrose-rich diets that mediates metabolic 

syndrome99 because fructose is better than 

glucose as a substrate for hepatic fatty acid 

synthesis101. Administration of 30 to 77% 

sucrose in the diet can induce metabolic 

syndrome in experimental animals within 10 to 

21 weeks, characterized by hyperglycemia, 

dyslipidemia, hypertension, and 

hyperinsulinemia97&102&103. 

A high-fat diet is the most widely used 

regimen to induce metabolic syndrome. Fats, 

either plant- or animal-derived, in 

concentrations of 20 to 60% of the diet can 

encourage visceral adiposity, insulin resistance, 

mild hyperglycemia, and dyslipidemia within 8 

to 16 weeks97&104. Also, high-carbohydrate-

high-fat diets are now widely used in the 

induction of metabolic syndrome within 4- 42 

weeks, discriminated by hypertension, glucose 

intolerance, visceral adiposity, and 

dyslipidemia105-107. This model may be faster 

than the other traditional dietary models108. 

The lower cost of dexamethasone97 and the 

short time of metabolic syndrome induction108-

111 made it the most affordable and time-saving 

model. However, the main drawback of this 
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model is that it does not mimic the reality like; 

weight gain89,90,112. Also, inflammation has no 

role in this model113, in contrast to dietary 

ones95,98,114. Consequently, the anti-

inflammatory-therapeutic effects of some drugs 

like; insulin sensitizer cannot detect via it 

(Table 2). 

 

Table 1: Dose- and time-dependent metabolic effects of dexamethasone in experimental animals. 

Dose Route 
Duration 

(Days) 
Metabolic Effects Species Reference 

0.001-0.01 

mg/kg 
IV 28 Hypertension; weight gain 

Sprague-Dawley 

rats 
[133] 

0.005 

mg/kg 
SC 28 

Dyslipidemia; 

hyperinsulinemia 
Wistar rats [88] 

0.01 

mg/kg 
Orally 14 Weight loss Wistar rats [134] 

0.07-0.44 

mg/kg 
IV 28 Hyperglycemia; weight loss Wistar rats [135] 

0.1-0.5 

mg/kg 
IP 5 Weight loss Wistar rats [110] 

0.2 mg/kg IP 21 
Hyperglycemia; 

hyperinsulinemia; weight loss 

Sprague-Dawley 

rats 
[136] 

0.5 mg/kg IP 15 
Hyperglycemia; dyslipidemia; 

weight loss 
Wistar rats [111] 

1 mg/kg IP 10 

Hyperglycemia; 

hyperinsulinemia; 

dyslipidemia; weight loss 

Wistar rats [19] 

1 mg/kg IP 5 
Hyperglycemia; dyslipidemia; 

hyperinsulinemia; weight loss 
Wistar rats [110] 

1 mg/kg IM 22 

Hyperglycemia; 

hypertriglyceridemia; 

hyperinsulinemia; weight loss 

Swiss albino mice [137] 

1 mg/kg Parenteral 5 Hyperglycemia Male rats [47] 

1 mg/kg IP 10 
Hyperglycemia; 

hyperinsulinemia; weight loss 
Wistar rats [19] 

2.5 mg/kg IP 42 
Dyslipidemia; liver steatosis; 

weight loss 
C57BL/6J mice [138] 

4 mg/kg SC 3 Hyperglycemia Wistar rats [139] 

10 mg/kg SC 10 Hyperglycemia Wister albino rats [140] 

10 mg/kg SC 8 

Hyperglycemia; 

hyperinsulinemia; 

dyslipidemia; weight loss 

Male albino rats [112] 

120 µl 

0.1% 
Ocular 30 dyslipidemia C57BL/6J mice [141] 

150 µl 

0.1% 
Ocular 30 dyslipidemia; weight loss 

Sprague-Dawley 

rats 
[142] 

IM: intramuscular, IP: intraperitoneal, IV: intravenous & SC: subcutaneous.
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Table 2: Time-dependent metabolic effects of dietary models of insulin resistance. 

Diet regimen 
Duration 

(Weeks) 
Metabolic Effects Species Reference 

HFrD (60%) 

3 
Hyperglycemia; hyperinsulinemia; 

hypertension. 

Wistar rats 
[143] 

7 
Hypertension; hyperinsulinemia; 

dyslipidemia 

Sprague-Dawley 

rats 
[144] 

8 
Hypertension; hypertriglyceridemia; 

hyperuricemia; kidney hypertrophy. 

Sprague-Dawley 

rats 
[93] 

16 
Hyperglycemia; hyperinsulinemia; 

hyperlipidemia; hyperuricemia. 

Wister albino rats 
[96] 

Fr. in drinking 

water (10%) 

8 Hyperinsulinemia; dyslipidemia. Wistar rats [94] 

12 

Hyperglycemia; hypertension; 

hyperinsulinemia; dyslipidemia; 

hyperuricemia. 

Wistar rats 

[95] 

Su. in drinking 

water (12 %) 
7 Hypertension; mild hyperinsulinemia 

SH rats 
[144] 

Su. in drinking 

water (32 %) 
10 

Hyperglycemia; hyperinsulinemia; 

dyslipidemia 

Sprague-Dawley 

rats 
[102] 

Su. in drinking 

water (30 %) 
21 

Hypertension; hyperinsulinemia; 

dyslipidemia 

Wister albino rats 
[145] 

HFD (32%) 10 Hyperglycemia; dyslipidemia. 
Sprague-Dawley 

rats 
[146] 

HFD (62%) 12 Hyperinsulinemia; dyslipidemia C57BL/6J mice [147] 

HFD (60%) 20 
Hyperglycemia; hyperinsulinemia; 

hypercholesterolemia. 

C57BL/6J mice 
[148] 

HFD (45%) 24 
Hyperglycemia; hyperinsulinemia; 

dyslipidemia. 

Sprague-Dawley 

rats 
[104] 

HFD (10%) 24 Hyperinsulinemia; dyslipidemia. C57BL/6J mice [149] 

HFD + STZ (30-40 

mg/kg) 
10 

Hyperglycemia; hypertension; 

hyperinsulinemia; dyslipidemia 

Wistar rats 
[150] 

HFrHFD 

8 Hyperinsulinemia; dyslipidemia. Wistar rats [151] 

16 
Hyperglycemia; hypertension; 

hyperinsulinemia; visceral adiposity 

Wistar rats 
[152] 

HFD (45%) + 

Fr/DW (30%) 
4-16 

Dyslipidemia (4 m); hyperglycemia; 

visceral adiposity (8 m); high LDL (16 

m) 

C57BL/6J mice 

[153] 

HFD (21%) + HSD 

(34%) 
4 Dyslipidemia; hyperinsulinemia 

C57BL/6J mice 
[154] 

HFD (25%) + HSD 

(65%) 
12 

Hyperglycemia; hyperinsulinemia; 

dyslipidemia. 

Sprague-Dawley 

rats 
[155] 

HFD (20%) + 

Fr/DW (10%) 
8 Dyslipidemia. 

Wistar rats 
[151] 

Fr: fructose: Fr/DW: fructose in drinking water, HFD: high fat diet, HFrD: high fructose diet, 

HFrHFD: high fructose, high fat diet, HSD: high sucrose diet, LDL: low density lipoprotein, m: 

month, Su: sucrose, SH: spontaneous hypertensive, STZ: streptozotocin. 

 

Dexamethasone vs. chemical models of type 

2 diabetes 

Streptozotocin (40 mg/kg) and alloxan (84 

mg/kg) can induce type 2 diabetes within a few 

days by causing mild damage to the pancreatic 

β-cells115&116. Also, streptozotocin in a higher 

dose (65 mg/kg) is used in combination with 

nicotinamide to induce type 2 diabetes117. 

Nicotinamide reduces the cytotoxic effect of 

streptozotocin118&119. Notably, several 

drawbacks of these chemicals include the high 

cost, the high mortality rate120-122, and the 

 

absence of insulin resistance123&124. To 

overcome these disadvantages, some models 

use streptozotocin plus a high-fat diet to induce 

insulin resistance and type 2 diabetes125. 

However, the latter intervention increases the 

cost and the time of the experiments. Thus, the 

dexamethasone model is considered the best 

cost- and time-saving for studying insulin 

resistance and metabolic syndrome (Table 3). 
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Combining dexamethasone with either 

streptozotocin or dietary models of insulin 

resistance 

Dexamethasone has been used with 

streptozotocin in a rat model of type 2 diabetes 

to mimic the β-cell dysfunction and insulin 

resistance that characterize this model126&127. In 

addition, dexamethasone has been used with a 

high-fat diet model of insulin resistance in mice 

to accelerate the progression of insulin 

resistance within a shorter time compared to a 

high-fat diet alone109. Notably, prenatal 

administration of dexamethasone followed by 

postnatal feeding with a high-fat diet in rats 

causes dysregulation of nutrient-sensing 

molecules such as circadian-clock genes in 

visceral adipose tissue128, as well as the 

elevation of systolic and diastolic blood 

pressure and activation of the renin-angiotensin 

system129&130. In the same context, the 

combination between dexamethasone and 

sucrose induced a higher level of 

hyperinsulinemia, hyperglycemia, and 

hypertriglyceridemia131&132. 
 

Conclusion 

Dexamethasone in a wide range of doses 

(0.005 up to 10 mg/kg/day) can induce insulin 

resistance, hypertension, and dyslipidemia 

within 7 to 28 days compared to a range of 21 

to 147 days of corresponding dietary models. 

The cost of dexamethasone is much lower than 

dietary and chemical models of type 2 

diabetes. Dexamethasone induces insulin 

resistance by modifying the same pathways 

affected by dietary models except for the 

inflammatory pathways. The main drawback of 

the dexamethasone-induced metabolic 

syndrome model is the absence of weight gain, 

the main feature of this syndrome in humans. 

However, dexamethasone remains the best 

choice regarding the cost and time for 

experimental investigation of new insulin 

sensitizers. 
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