EFFECT OF COLOCASIA ESCULENTA (L.) SCHOTT (ARACEAE) ETHANOL LEAF EXTRACT ON SPERM CONCENTRATION IN MALE WISTAR RATS

Temitayo O. Ajayi*1, Gideon O Alade2, Kemelayefa O. James3 and Kola’ K. Ajibesin2

1Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria
2Department of Pharmacognosy & Herbal Medicine, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Nigeria
3Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Nigeria

Colocasia esculenta (L.) Schott (Araceae) is a staple food which supply needed nutrients in Africa and is therefore, employed in ethnomedicine. This study aimed to evaluate the effect of the leaf ethanol extract as well as its partitioned fractions (ethyl acetate, butanol and aqueous) on some male reproductive parameters such as sperm count, motility and morphology as well as the histology of testes in male Wistar rats after 15 days of administration of the extracts/fractions. The ethanol extract showed significant increases of 66 and 213% in sperm concentration at 500 and 1000 mg/kg respectively. This activity was largely retained in the ethylacetate with 200, 213 and 300% in sperm concentration at 50, 100 and 200 mg/kg, respectively and aqueous fractions with 274 and 657% increase at 50 and 100 mg/kg, respectively. Motility and morphology were not significantly altered. The histology of the tests revealed that spermatozoa cells were the positively affected cells.

Keywords: Histology, motility, morphology, fractions

INTRODUCTION

Colocasia esculenta (L) Schott of the family Araceae is an herbaceous annual plant which is extensively cultivated in Southeast Asia and commonly known as Arbi, Arvi and Eddoe. The corms and leaves of C. esculenta are ethnomedicinally employed for liver diseases1. The juice from the leaf is also useful in scorpion sting, snake bite and food poisoning of plant origin. This plant is also important in Ayurveda identified ailments such as constipation, alopecia, stomatitis, haemorrhoids and general body weakness1. The leaf juice has rubefacient, stimulant and styptic property and is useful in internal haemorrhages, adenitis, otalgia, asthma, arthritis, diarrhoea, internal hemorrhage, neurological and skin disorders 2. The corn juice has demulcent, laxative and anodyne and contraceptive property in female3, it is also employed to treat stomach swelling, general body ache, baldness and fever1-2. The plant (all the parts including the leaf) is a staple food throughout Africa due to its notable dietary benefits; the leaves are vital sources of protein, dietary fibre, ascorbic acid and some nutritionally important minerals. Among the chemical constituents of this plant are cyanidin-3-rhamnoside, cyanidin-3-glucoside anthocyaninsperlargonidin 3-glucoside. and pelargonidin-3-glucoside. Others include Apigenin, luteolin, anthocyanins4 14α-methyl-5α-cholesta-9, 24-diene-3β, 7α-diol, 14α-methyl-24-methylene-5α-cholesta-9, 24-diene-3α, 7α-diol, β-sitosterol, stigmasterol, nonacosane, tetracos-20-en-1, 18-diol; 25-methyl triacont-10-one; octacos-10-en-1, 12-diol; pentatriacont-1, 7-dien-12-ol and 25-methyl-tritriacont-2-en-1, 9, 11-triol5. Biological activities such as antimicrobial6, antifungal7, diabetec, anti-inflammatory8, antihelminthic10, antioxidant11.

Received in 6/3/2023 & Accepted in 6/6/2023

*Corresponding author: Temitayo O. Ajayi. E-mail: to.ajayi@mail1.ui.edu.ng or tayomi.ajayi@gmail.com
and hypolipidaemic12, antihelminthic13 have been reported for the extracts of the plants. Many plants such as which had medicinal effects on female reproductive parameters have also been reported to show pro or anti effect in the male14-17. The leaf of Basket Grass (Poaceae)18, Kobus (Humiriaceae) stem bark19, Seneca Alata (L.) Roxb. Leguminosae leaf20 and Peperomia Pellung (L.) Kunth, (Piperaceae) leaf20 have been reported to reduce sperm concentrations while plants like Acanthus montanus (Nees) T. Anderson (Acanthaceae), Commelina diffusa Burm.f. (Commelinaceae) and Alchornea Cordata Benth. (Euphorbiaceae) showed sperm count boosting effect21. While estrogen like activity has been reported in the female22, the effect on the male has not been carried out and this has necessitated this study.

MATERIALS AND METHODS

Animals

Male Wistar rats were purchased from the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Bayelsa State. They were kept in a chamber at 25±3°C and 55±5 % humidity for 12 h light/dark illumination schedule. They were fed with standard diet feed for rodent. All animals were allowed free access to food and water. All the experiments were performed between 9.00 am and 12.00 noon daily as adapted from Baumans'23 study record. Ethical approval to carry out this study was sought and obtained from the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Nigeria ethical committee.

Determination of LD\textsubscript{50}

The Lorke's method (1983)24 was used for the determination of the oral median lethal dose (LD\textsubscript{50}). All animals were fasted overnight prior to the experiment but had free access to water until an hour before the experiment. Feeding resumed two hours after commencement of the experiment. The experiment was divided into two phases. In the first phase, nine rats were used with doses of 10, 100 and 1000 mg/kg of extract administered orally. They were observed for signs of acute toxicity and death for 24 h. In the second phase, the procedure was repeated using three rats allotted into three groups of a rat each. Doses (1600, 2900 and 5000 mg/kg) were administered. They were likewise observed for signs of acute toxicity and mortality for 24 h.

Reproductive effect C. esculenta leaf ethanol extract

A total of 24 male Wistar rats were employed for the study. They were divided at random into 4 groups of 6 animals each. Animals in groups A - C were administered orally with 250, 500 and 1000 mg/kg body
weight of *C. esculenta* leaf extract while group D serving as negative control distilled water which was the vehicle used for the dissolution of extracts. The administration of the extract was carried out daily for 15 days. At the end of the treatment, animals were fasted overnight and thereafter anaesthetized using chloroform, they were sacrificed; and testes and the epididymis were separately excised and used for sperm count and histopathological evaluation.

Epididymal sperm count

From each epididymis, the caudal part was removed and placed in a beaker containing 1ml physiological saline solution. The section was rapidly macerated with 5 mL saline solution for about five to ten minutes for spermatozoa to be released into the saline solution. Determination of sperm count, motility and morphology was carried out using standard method\(^{19}\). A few drops of semen were dropped onto the microscope slide and viewed under the microscope using x10 objective to evaluate sperm morphology and motility. Total sperm count was done with a 1 in 20 dilution with semen fluid by employing improved Neubauer haemocytometer\(^{19}\). Data were referred as x10\(^6\) sperm per epididymis. The testes were preserved in 10.0% forma-saline for histological evaluation.

Routine histological preparation

The histology of the testes was done by the method described by Alade *et al.*, 2022\(^{25}\). The organ was cut in slaps of about 0.5 cm thick transversely and fixed in 10.0% buffered formalin for a day after which it was transferred to 70.0% alcohol for dehydration. The tissues were passed through 90.0% and absolute alcohol and xylene for different durations before they were transferred into two changes of molten paraffin wax for 1hr each in an oven at 65°C for infiltration. They were thereafter immersed and serial tissue sections trimmed with the aid of a rotary microtome at 6 microns after which they were fixed into albumerized slide. They were then given time to get dried using a hot plate for 2 minutes. The slides were dewaxed using xylene after which they were passed through absolute alcohol (2 changes), 70 and 50.0% alcohol and finally water for 5 minutes. The photomicrographs were taken using x 100 objectives.

Data analysis

Data were presented in mean, standard error of mean and graphically using graph pad prism 8.3 comparison of data were done with post hoc test (Tukey).

RESULTS AND DISCUSSION

Generally, there was no sedation, immobility, salivation, seizure, death among other toxicity signs recorded at 5 g/kg in the acute toxicity study. It therefore showed that the lethal dose is greater than 5 g/kg (Table 1). The ethanol leaf extract showed a dose dependent increase in sperm count which was only significant at 500 mg/kg \((P< 0.02)\) and 1000 mg/kg \((P< 0.001)\) with 66 and 213% increase, respectively (Fig. 1). Sperm motility of the ethanol extract also followed the same pattern, which is dose dependent (Fig. 2). The sperm morphology was similar to those of the control (Fig. 3). The partitioned fractions showed that the butanol fraction is devoid of activity while activity was retained in the ethyl acetate with significant increases of 200, 213 and 300% \((P< 0.002)\) at 50, 100 and 200 mg/kg dose. The aqueous fraction had significant sperm count significant increases \((P< 0.001)\) of 274 and 657% at 50 and 100 mg/kg dose, respectively while the 200 mg/kg dose was devoid of activity (Fig. 4) and the histology of the testes showed a distorted structural architecture. This suggests that ethylacetate presents a better choice compared to the aqueous fraction. The motility and morphology were not affected in these active fractions (Fig.s 5 & 6). The histology of the testes also corroborated these findings (Tables 2 & 3 and plates 1-4). The main target cells are the spermatozoa as shown in the histology. It therefore showed that the ethanol extract of *C. esculenta* only has sperm boosting activity especially by increasing the spermatozoa and does not affect the motility and morphology. Comprehensive studies have been carried out on flavonoids in the management of reproductive system dysfunction in male especially in the area of testicular architecture and low sperm quality\(^{26}\). Luteolin and apigenin which are flavonoids that have been isolated from this plant may therefore be responsible for the sperm boosting activity.
Table 1: General appearance of rats administered orally with *Colocasia esculenta* ethanol leaf extract in the acute toxicity study.

<table>
<thead>
<tr>
<th>mg/kg</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>1600</th>
<th>2900</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One</td>
<td>One</td>
</tr>
<tr>
<td>Immobility</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One</td>
<td>One</td>
</tr>
<tr>
<td>Faeces</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Wet</td>
<td>Dry</td>
<td>Wet</td>
</tr>
<tr>
<td>Skin</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
</tr>
<tr>
<td>Hair form</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
<td>Intact</td>
</tr>
<tr>
<td>Death</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Fig. 1: Effect of *Colocasia esculenta* leaf ethanol extract on sperm concentration of male Wistar rats. Data showed statistically significant increase in the sperm cell at higher dose *P* $<$ 0.025, **P** $<$ 0.005.

Fig. 2: Effect of *Colocasia esculenta* leaf ethanol extract on sperm motility of male Wistar rats. Data showed statistically significant increase in motility of the sperm cells at higher dose **P** $<$ 0.005.
Fig. 3: Effect of *Colocasia esculenta* leaf ethanol extract on sperm morphology of male Wistar rats. Showed no statistically significant different in the morphology dose. P˃0.05.

Key: Percentage normal sperm.

Fig. 4: Effect of *Colocasia esculenta* leaf partition fractions on sperm concentration of male Wistar rats. Data showed statistically significant increase in the sperm cell in the ethyl acetate and the aqueous fractions. **P˂0.002, ***P˂0.001, ns P˃0.05 compared with the control group.

Key: ETA- ethylacetate fraction, BUT- butanol fraction, AQO- Aqueous fraction.
Fig. 5: Effect of *Colocasia esculenta* leaf partition fractions on sperm motility of male Wistar rats. Data showed no statistically significant (P>0.05).

Key: ETA- ethylacetate fraction, BUT- butanol fraction, AQO- Aqueous fraction.

Fig. 3: Effect of *Colocasia esculenta* leaf partition fractions on sperm morphology of male Wistar rats. Data showed no statistically significant (P>0.05).

Key: ETA- ethylacetate fraction, BUT- butanol fraction, AQO- Aqueous fraction.
Table 2: Description of the histology of the testes of male Wistar rats administered with *Colocasia esculenta* leaf ethanol extract.

<table>
<thead>
<tr>
<th>Dose</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological normal testes similar to control</td>
<td>Histological normal testes similar to control, interstitial cells contain leydig cells with seminiferous tubules containing spermatogonia, spermatocyte and spermatozoa</td>
<td>Histological normal testes similar to control but with increased concentration of spermatozoa</td>
<td></td>
</tr>
<tr>
<td>Histological normal testes similar to control with increased concentration of spermatozoa</td>
<td>Histological normal testes similar to control</td>
<td>Histological normal testes similar to control, interstitial cells contain leydig cells with seminiferous tubules containing spermatogonia, spermatocyte and spermatozoa but with increased number in spermatozoa concentration</td>
<td></td>
</tr>
<tr>
<td>Histological normal testes similar to control with increased concentration of spermatozoa compared to control, 50 and 100 mg/kg</td>
<td>Histological normal testes similar to control with increased concentration of spermatozoa compared to control, 50 and 100 mg/kg</td>
<td>Histological distorted testes similar to control, interstitial cells contain leydig cells with seminiferous tubules containing distorted spermatogonia, spermatocyte and spermatozoa,</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Description of the histology of the testes of male Wistar rats administered with *Colocasia esculenta* leaf partitioned fractions.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Ethylacetate</th>
<th>Butanol</th>
<th>Aqueous</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mg/kg</td>
<td>Histological normal testes similar to control</td>
<td>Histological normal testes similar to control, interstitial cells contain leydig cells with seminiferous tubules containing spermatogonia, spermatocyte and spermatozoa</td>
<td>Histological normal testes similar to control but with increased concentration of spermatozoa</td>
</tr>
<tr>
<td>100mg/kg</td>
<td>Histological normal testes similar to control with increased concentration of spermatozoa</td>
<td>Histological normal testes similar to control</td>
<td>Histological normal testes similar to control, interstitial cells contain leydig cells with seminiferous tubules containing spermatogonia, spermatocyte and spermatozoa but with increased number in spermatozoa concentration</td>
</tr>
<tr>
<td>200mg/kg</td>
<td>Histological normal testes similar to control with increased concentration of spermatozoa compared to control, 50 and 100 mg/kg</td>
<td>Histological normal testes similar to control with increased concentration of spermatozoa compared to control, 50 and 100 mg/kg</td>
<td>Histological distorted testes similar to control, interstitial cells contain leydig cells with seminiferous tubules containing distorted spermatogonia, spermatocyte and spermatozoa,</td>
</tr>
</tbody>
</table>
Plate 1: Histology of the testes of male Wistar rats administered with *Colocasia esculenta* leaf ethanol extract.
BM- Basement membrane, SPG-spermatogonia, SPC- spermatocytes, SPZ- spermatozoa, SC-sertoli cells, ISS- interstitial spaces.

Plate 2: Histology of the testes of male Wistar rats administered with *Colocasia esculenta* leaf ethyl acetate fraction.
BM- Basement membrane, SPG-spermatogonia, SPC- spermatocytes, SPZ- spermatozoa, SC- sertoli cells, ISS- interstitial spaces.
Plate 3: Histology of the testes of male Wistar rats administered with Colocasia esculenta leaf butanol fraction.

Plate 4: Histology of the testes of male Wistar rats administered with Colocasia esculenta leaf aqueous fraction.
Conclusion

This study showed the sperm boosting potential of the leaf of *C. esculenta* which resides mainly in the ethyl acetate fraction. A further study is hereby recommended in order to isolate the sperm cell boosting constituent(s) through bioactivity guided fractionation. On the interim, the use of *C. esculenta* leaf can be encouraged as food for men with infertility.

Acknowledgement

The authors are grateful to Dr. T.O. Alade of the Department of Medical Laboratory Science, Faculty of Basic Science, Niger Delta University for assisting in the semen evaluation.

REFERENCES

16. V. Poli and M.S. Reddy, "Effect of Eugenol and *Ocimum sanctum* on

تأثير مستخلص أوراق الإيثانول لنبات كولوكاسيا إسكوبولتا (ال.) شوت (العائلة النخلية) على تركيز الحيوانات المنوية في ذكور فران ومستقبلات
تيمتيابو أو أجابي؟ - جدعون أو ألادي - كيميلافا أو جيمس - كولا ك. أجيبيسين

قسم العقاقير، كلية الصيدلة، جامعة إبادان، نيجيريا
قسم العقاقير وطب الأعشاب، كلية الصيدلة، جامعة دلتا النيجر، جزيرة ويلبرفورس، نيجيريا
قسم علم الأدوية والسموم، كلية الصيدلة، جامعة دلتا النيجر، جزيرة ويلبرفورس، نيجيريا

يعتبر نبات كولوكاسيا إسكوبولتا (ال.) شوت (العائلة النخلية) هو غذاء أساسي يوفر العناصر الغذائية اللازمة في أفريقيا، وبالتالي يستخدم في الطب العرقي. هدف هذه الدراسة إلى تقييم تأثير مستخلص أوراق الإيثانول و الخلاصات (خلات الإيثيل والبيوتانول والمائي) على بعض المؤشرات التناسلية الذكرية مثل عدد الحيوانات المنوية وحركتها وشكلها وكذلك دراسة أنسجة الخصية في ذكور فران ومستقبلات بعد 15 يومًا من تناول المستخلصات. وقد أظهر مستخلص الإيثانول زيادة معتنقة بلغت 66 و213% في تركيز الحيوانات المنوية عند تركيز 500 و1000 ملجم/كجم على التوالي. تم الاحتفاظ بهذا النشاط إلى حد كبير في خلاصة خلات الإيثيل بنسبة 26 و213% و300% في تركيز الحيوانات المنوية عند تركيز 50 و1000 ملجم/كجم على التوالي وفي الخلاصة المائية زيادة 77 و65% عند 50 و100 ملجم/كجم على التوالي. أما الحركة والشكل فلم يتم تغييرهما بشكل كبير. وأظهرت دراسة نسجة الخصية أن الخلايا المنوية هي الخلايا المتأثرة إيجابيا.