

Bulletin of Pharmaceutical Sciences Assiut University Website: http://bpsa.journals.ekb.eg/ e-mail: bullpharm@aun.edu.eg

POTENTIAL OF ETHANOL EXTRACT OF GUAVA (PSIDIUM GUAJAVA L.) LEAVES AS ADJUVANT-ANTIBIOTIC ON SALMONELLA TYPHI CHARACTERIZED

Wahyu Hendrarti^{*1}, Muhammad Robiansyah¹, Syamsu Nur², Astuti Amin², Michrun nisa³ and Hamdayani Lance Abidin⁴

¹Department Pharmacology and Clinical Pharmacy, Sekolah Tinggi Ilmu Farmasi Makassar, 90242, Makassar, Indonesia

²Depratment of Pharmaceutical Analysis and Medicinal Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, 90242, Makassar, Indonesia

³Depratment of Pharmaceutical Technology, Sekolah Tinggi Ilmu Farmasi Makassar, 90242, Makassar, Indonesia

⁴Depratment of Pharmaceutical Biology, Sekolah Tinggi Ilmu Farmasi Makassar, 90242, Makassar, Indonesia

Guava (Psidium guajava L.) contains many chemical compounds, including quercetin, myricetin, epicatechin, and tannins which have been shown to have efficacy as an efflux pump inhibitor (EPI) in several pathogenic bacteria. This study aimed to investigate the synergistic effect of the ethanol extract of guava leaves with five common antibiotics on Salmonella typhi isolates expressing active efflux pumps. Bacterial characterization was carried out on clinical isolates of S. typhi, and molecular resistance mechanisms were determined using qRT-PCR by measuring the expression of the Acriflavine resistance protein B (AcrB) efflux pump. Guava leaves were extracted by maceration using 70% ethanol. Tests were carried out using the method with tetracycline, ampicillin, trimethoprim-sulfamethoxazole, diffusion chloramphenicol, and ciprofloxacin. The extract was made in serial concentrations of 0.01, 0.025, 0.05, 0.075, and 0.1%. The results showed that the tested isolates decreased the expression of AcrB from 11.48167 to 7.38818 pg/mL after adding CCCP. The synergistic effect occurred at (1) extract concentration of 0.1% against tetracycline 30 µg, (2) concentration of 0.05% against ampicillin 10µg, (3) concentration of 0.075% against trimethoprimsulfamethoxazole 23.75-1.25 μ g, (4) concentration of 0.05% against chloramphenicol 30 μ g, (5) concentration of 0.025% against ciprofloxacin 5 µg. The ethanol extract of guava leaves (Psidium guajava L.) synergized with the studied antibiotics and displayed efflux pump inhibitory activity. Consequently, it could serve as a natural antibiotic adjuvant candidate.

Keywords: Antibiotics, efflux pump inhibitor, guava leaves, Salmonella thypi ST019

INTRODUCTION

Researchers said that in 2019 resistance to antimicrobials caused around 3.57 million deaths, and 1.27 million of them were caused by antibiotic resistance¹. The World Health Organization (WHO) lists antimicrobial resistance as one of humanity's top 10 global public health threats². It is the first to release a list of drug-resistant bacteria that pose the greatest threat to global health, including *Salmonella typhi* (*S. typhi*)³. This bacterium was reported in 2014 to have widespread resistance to the mainstay drug Fluoroquinolone¹, making it one of the causes of deadly diseases due to the scarcity of its antibiotics. Based on this, the discovery of new antibiotics is urgently needed³. The speed at which bacteria, especially gram-negative ones, develop antibiotic resistance far exceeds drug

Received in 15/5/2023 & Accepted in 1/8/2023

^{*}Corresponding author: Wahyu Hendrarti, E-mail: wahyuhendrarti77@gmail.com

discovery, resulting in incurable infections. The search for adjuvant antibiotics is a promising alternative strategy to overcome this case^{2,4}.

Resistance in S. typhi and other organisms has been widely known, including bacteriaproducing enzymes capable of degrading antibiotics such as β -lactamases, a permeability barrier played by the outer membrane, and intrinsic resistance due to overexpression of the antibiotic efflux pump⁵. The main mechanism of antibiotic resistance is due to the role of active efflux from bacteria which can cause failure to accumulate the amount of drug in bacterial cells. In this mechanism, antibiotics can enter the bacterial cell but are immediately pumped out of it actively outside of their normal work. This mechanism increases the frequency of failed therapy when using antibiotic drugs⁶. Genes encoding drug efflux (protein-transporters) have pumps been identified and isolated from several species of S. typhi. The efflux pump is a protein that transports typhoid drugs, including Chloramphenicol, Ampicillin, Trimethoprimtetracycline, Sulfamethoxazole, and Ciprofloxacin. The AcrAB-Tolc efflux pump system is the most dominant transporter in S. typhi, especially AcrB, and can pump several types of drugs out of cells⁷. One strategy to overcome this problem is effective resistance modification through the search for efflux pump inhibitors (EPI) which can be combined with antibiotics and provide a synergistic effect or commonly called adjuvant antibiotics. Combining phytochemical agents with an antimicrobial will neutralize the resistance mechanism, allowing the drug to remain effective against resistant microbes⁴.

Several synthetic EPIs, such as carbonyl cvanide m-chlorophenylhydrazone (CCCP) and phenyl-arginine- β -naphthylamide (Pa β N), were found to be toxic to humans, so they were only studies^{8,9}. used in vitro in Treat chlorpromazine, reserpine, verapamil, and omeprazole⁸⁻¹¹ in small concentrations can also function as an EPI. These drugs were also found to cause dangerous side effects, so the search for EPI from natural ingredients needs to be increased¹².

Natural adjuvants are used with antibiotics associated with high resistance levels, such as active efflux pumps. The synergism

phenomenon, which reduces resistance (or increases sensitivity) even in multidrugresistant bacteria, and several natural product compounds have been tested. Some of them are effective on various targets. Several compounds are active on almost all targets. For example, tellimagrandin and corilagin inhibit PBP2a (binding site of β -lactam antibiotics); gallic acid, thymol, and carvacrol increase the permeability of the bacterial outer membrane; epigallocatechin gallate (EGCG) inhibits βlactamases; and reserpine, isopimarane, EGCG, and carnosic acid; and active substances found in the Apocynaceae family have been shown to inhibit bacterial efflux pumps^{11,12}.

Other studies have mentioned that several natural substances have efflux pump inhibition activity, including polyphenolics¹³, such as quercetin, myricetin, epicatechin, and tannins^{9,10,14}. These active substances can be obtained from *Psidium guajava* (L.), especially the leaves. Psidium guajava (L.) belongs to the Myrtaceae family and is an important fruit in tropical regions such as India, Indonesia, Pakistan, Bangladesh, and South America. Guava plant leaves have been studied for their health benefits. These are associated with the many phytochemical compounds or secondary metabolites they contain, such as flavonoids, sesquiterpenes. triterpenoids. glycosides, alkaloids. saponins, and other phenolic compounds. Specific compounds identified include quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin, gallic acid, catechins, epicatechin, chlorogenic acid, epigallocatechin gallate, tannins, and caffeic acid¹⁵.

This study aims to determine the synergy effect and activity of efflux pump inhibitors of the ethanol extract of *Psidium guajava* (L.) guava leaves with several antibiotics on *S. typhi* isolates characterized as resistant due to active efflux pumps.

CHEMICALS AND METHODS

Chemicals

The chemicals use were ethanol (70 % w/w) Mueller-Hinton Agar (MHA), paper disk Chloramphenicol ($30\mu g$), Ampicillin ($10\mu g$), and Trimethoprim-Sulfametoxazole ($1.25-23.75\mu g$), tetracycline ($30\mu g$), and Ciprofloxacin ($5\mu g$)); Resistant *S. typhi* ST019

CCCP [Sigma], Primer gyrB gene, Acriflavine resistance protein B (AcrB), mix PCR, DMSO. The Guava leaf samples were obtained from Bajeng Village, Pattallassang District, Takalar Regency, South Sulawesi-Indonesia (5°24'43.2"S 119°25'59.1"E).

METHODS

Salmonella thypi Characterization

The test-bacterial screening was carried out on clinical isolates of S. typhi resistant to 1 or more antibiotics using CCCP (a synthetic efflux pump inhibitor used in the determination of the mechanism of resistance due to active efflux pump) treatment grown with 5 test antibiotics. After determining the sensitivity of each isolate, 1 loop was taken, and the mechanism was determined resistance molecularly using qRT-PCR (CFX connect system, Biorad Laboratories) with primers and PCR conditions according to the Table 1 by measuring the expression of the efflux pump, namely AcrB, in isolates without and in the combination of 100µM CCCP.

Extract Preparation and Phytochemical Screening

Guava leaves were prepared by standard sorting and dried before being extracted by maceration using 70% ethanol. Evaporated with a rotary evaporator until a thick extract was obtained. The extract was subjected to a phytochemical screening in the form of a qualitative test of Flavonoids, Alkaloids, Saponins, and Tannins ^{16,17}. The extract was also carried out to ensure it was free from solvents with an ethanol-free test.

Efflux pump inhibition activity investigation

The method used was diffusion using MHA media and incubation at 37°C for 24

hours, namely: Divided into 4 groups: (1) Group CCCP; (2) Group without extract and DMSO; (3) Group without DMSO combined extract; (4) Group Extracts of various concentrations. DMSO solvent was used to dissolve the extract. In each group, all the Petri dishes contained MHA media, *S. typhi* test isolates, and 5 different types of antibiotics. Group 1 added CCCP, group 2 did not add anything (contains only MHA media, *S. typhi*, and 5 types of test-antibiotics), group 3 only DMSO was added, and group 4 in each petri dish consisted of MHA, *S. typhi*, 5 types of antibiotics-test, 1 extract concentration. Each treatment was carried out in triplicate.

Data Analysis

Quantitative data in the form of the diameter of the antibiotic inhibition zone was analyzed descriptively based on the standard inhibition zone breakpoint according to CLSI (2021) and EUCAST (2021)^{18,19}.

RESULT AND DISCUSSION

In this study, the isolates of S. typhi bacteria were shown to have a resistance mechanism due to an active efflux pump. This was indicated by the decrease in the average value of AcrB efflux pump expression from 11.48 to 7.39 pg/mL with the addition of CCCP (Table 2). CCCP substance is a synthetic EPI that is often used in the characterization of resistance mechanisms in vitro. The EPI activity of CCCP is very strong and has a toxic effect on humans, so its use is limited for research^{8,9}. This inhibitor was used in several previous studies to predict the resistance mechanism of an isolate or bacteria^{20,21} or to study the role of the substance concerning the search for efflux pump inhibitors as an adjuvant antibiotic9.

Fable 1: Primer sequences	of the AcrB gene and	qRT-PCR condition	ons (19) (Bau	ucheron, 2012).
----------------------------------	----------------------	-------------------	---------------	-----------------

Target gen	Primer Oligonucleotide (5'–3') Sequences		Size	Annealing
88				(°C)
aonD	acrB-f	TCGTGTTCCTGGTGATGTACCT	60	66
асть	acrB-r	AACCGCAATAGTCGGAATCAA	08	00
aunD	gyrB-f	TCTCCTCACAGACCAAAGATAAGCT	01	60
gyrB	gyrB-r CGCTCAGCAGTTCGTTCATC		01	00

Isolate code ST019	The average diameter of the zone of inhibition of antibiotics (mm) without and combination with CCCP									
	Chloramphenicol		Ampicillin Trimer Sulfame		Trimeto Sulfamet	prim- oxazole		cycline	Ciprofloxacin	
	А	В	Α	В	А	В	Α	В	Α	В
	8.9	19.4	8.7	23.1	8.2	17.8	13.9	23.2	30.7	32.3
	±0.43	±0.77	±0.46	±1.9	±0.67	±0.57	±0.10	±0.53	±0.6	±1.23
Sensitivity category*	R	S	R	S	R	S	Ι	S	S	S
Expression of	A						В			
AcrB (pg/mL)	11.48					7.39				

Table 2: Characteristics of the test sample in the form of resistant *S. typhi* isolates mediated by active efflux.

Notes: A = without the addition of CCCP; B=CCCP combination; S=Sensitive; I=Intermediate; R=Resistance; Chloramphenicol; (S= \geq 18mm; I=13-17mm; R= \leq 12mm); Ampicillin (S= \geq 17mm; I=14-16mm; R= \leq 13mm); Trimethoprim-Sulfamethoxazole (S= \geq 16mm; I=11-15mm; R= \leq 11mm); Tetracycline (S \geq 15mm; I = 12-14mm, \leq 11mm); Ciprofloxacin (S \geq 31mm; I = 21-30mm; R \leq 20mm)^{18,19}.

The group of *S. typhi* isolates before and after the addition of CCCP was tested molecularly by looking at the expression of its AcrB efflux pump. AcrB Efflux Pumps is a member of the resistance-nodulation-cell division (RND) superfamily. Overexpression of this efflux pump contributes to increased antibiotic resistance, especially in gramnegative bacteria²². The suppression of AcrB expression in the group combined with EPI (CCCP) indicated that the *S. typhi* bacteria used in the study had an active efflux pump resistance mechanism. Furthermore, this *S. typhi* isolate was used to test EPI activity from natural ingredients, namely guava leaves.

Guava leaves were extracted with 70% ethanol, and the results of phytochemical

screening showed that this plant contains flavonoids, tannins, and saponins (Table 3). According to Kumar et al.¹⁵, guava leaves flavonoid compounds contain including quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin, and phenolic compounds including gallic acid, catechins, epicatechins, chlorogenic acid. epigallocatechin gallate, caffeic acid and also tannin compounds¹⁸. These compounds have activity as EPI^{9,10,14}. Although only qualitative tests were carried out with compound classes in this study, this has provided an initial picture of the active compound content, which is strongly suspected of having EPI properties.

Group compounds	Identification results
Flavonoid	+
Tannin	+
Alkaloid	-
Saponin	+

Table 3: Phytochemical screening analysis of extract.

Notes: (+) positive results, (-) absence in guava leaves extract.

Tests in determining the EPI activity of guava leaf extract obtained the results of the initial sensitivity test on S. typhi showing that the group that was not added to the extract was resistant to chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole; Intermediate category or has decreased sensitivity to tetracycline; and still sensitive category to ciprofloxacin (Table 5 and 6). The activity of the efflux pump inhibitor (EPI) of the ethanol extract of guava leaves was determined by first measuring the diameter of the antibacterial-test inhibition zone (chloramphenicol (30µg), ampicillin (10µg), trimethoprimsulfametoxazole (1.25-23.75µg), tetracycline $(30 \mu g)),$ and ciprofloxacin (5µg), then compared between the group without extract and the group with the combination of extracts. Suppose there is an increase in the diameter of the inhibition zone and an increase in the sensitivity category of the antibacterial test from Resistant or Intermediate. In that case, it becomes sensitive again after adding the extract. Sensitivity category, intermediate, and

resistance from the test results were observed and adjusted to the standard breakpoint diameter of the inhibition zone from EUCAST, 2021, and CLSI, $2011^{18,19}$ (**Table 4**).

The test antibiotics used in this study are classic drugs in treating typhoid infection due to S. typhi. Ciprofloxacin is a fluoroquinolone group initially used to treat resistance to classic drugs but later also experienced a widespread acceleration of resistance. In 2014, it was reported that S. typhi bacteria had widespread resistance to the mainstay drug fluoroquinolone ¹, making it one of the causes of deadly diseases due to the scarcity of antibiotics. S. typhi isolates in this study were found to be still sensitive to ciprofloxacin. This is possible because the prevalence of resistance was still less than the other 4 classic drugs. Ciprofloxacin is still included as one of the antibiotic tests intended to see EPI activity against drugs that are not yet resistant so that there can be an initial description of the mechanism of extract acts as an antibiotic adjuvant candidate.

Table 4: The standard breakpoint diameter (mm) of the inhibition zone.

No	Antimionobial	Concentration	Diameter (mm)			
	Antimicrobia	(µg)	S	Ι	R	
1	Trimetoprim-Sulfametoxazole	23.75-1.25	≥16	11-15	≤11	
2	Ampicillin	10	≥17	14-16	≤13	
3	Chloramphenicol	30	≥18	13-17	≤12	
4	Tetracycline	30	≥15	12-14	≤11	
5	Ciprofloxacin	5	≥31	21-30	≤20	

Notes: (S) sensitive, (I) intermediate, and (R) resistant.

Table 5: The Inhibition zone diameter (mm) of several antibiotics.

Inhibition zone diameter (mm) of antibiotics:									
Antibiotica	CCCP	No extract	No extract	Guava leaf extract in concentration (%) of:					
Antibiotics		(-DMSO)	(+DMSO)	0.01	0.025	0.05	0.075	0.1	
T (1'	23.2	13.9	13.9	14.4	16	16.9	17.5	21.1	
Tetracycline	±0.53	±0.10	± 0.23	±2.27	±0.53	±0.67	±1.86	± 2.50	
A	23.1	8.7	9.1	6.6	13.3	19.3	10.5	10.2	
Ampicium	±1.9	±0.46	±0.4	± 0.00	±0.97	±0.73	±0.36	±0.47	
Trimetoprim-	17.8	8.2	8.4	7.2	10.7	11.1	16.4	8.2	
Sulfametoxazole	±0.57	±0.67	±0.67	±1.04	±0.95	±0.64	±0.53	±1.47	
Chloremphanical	19.4	8.9	9.1	8.7	10.5	14.3	11.7	9.4	
Chloramphenicol	±0.77	±0.43	±0.46	±0.95	±0.38	±0.76	±1.08`	± 0.85	
Ciprofloxacin	32.3	30.7	33.2	33	33.8	33.5	32.2	33.4	
	±1.23	±0.6	±1.13	±0.3	±0.3	±1.23	±0.83	±0.2	

Notes: (-DMSO) is the means without DMSO, (+DMSO) is the means with DMSO as solvent. In this study, we compared sample extracts dissolved with DMSO and without DMSO to observe the inhibitory effect and sensitivity of DMSO solvent on each antibiotic. Tests were carried out without the addition of DMSO, namely when the initial screening was determined whether the *S. typhi* used was in the sensitive, intermediate, or resistance zone based on the inhibition zone.

Sensitivity category of antibiotics:									
Antibiotics	CCCP	No extract	No extract	With extract (%) 0,01 0,025 0,05 0,075 0,1					
		(-DMSO)	(+DMSO)				0,1		
Tetracycline	S	Ι	Ι	Ι	S	S	S	S	
Ampicillin	S	R	R	R	Ι	S	R	R	
Trimetoprim- Sulfametoxazole	S	R	R	R	R	R	S	R	
Chloramphenicol	Ι	R	R	R	R	Ι	R	R	
Ciprofloxacin	S	S	S	S	S	S	S	S	

Table 6: The sensitivity category of antibiotics.

Notes: S=Sensitive; Intermediate=Resistant; Chloramphenicol; (S= \geq 18; I=13-17; R= \leq 12) *based on CLSI, (2011) and Eucast, (2022).

S. typhi experienced increased sensitivity or susceptibility to antibiotics in the test after adding guava leaf extract at 1 or several concentrations. This provides information that the amount or ratio of ethanol extract from guava leaves (Psidium guajava L.) can affect EPI activity. The CCCP group was the positive control group, and in testing S. typhi bacteria with 30 µg tetracycline antibiotics, the average inhibition zone was 23.2 ± 0.53 sensitive category (S). This indicates that in the presence of CCCP, the S. typhi test bacteria with tetracycline antibiotics, which initially had an inhibition zone of 13.9 ± 0.10 mm in the intermediate (I) category, experienced an increase in the inhibition zone and became sensitive again. In testing with guava leaf extract, there was also an increase in the inhibition zone and a change in category at each extract concentration starting from 0.025, 0.05, 0.075, and 0.1% (Table 5). The synergism effect occurred with an increase in the inhibition zone of the test antibiotics and a change in the category to become sensitive again. The highest concentration provides a synergistic effect between tetracycline and guava leaf extract at 0.1%.

The CCCP group on the *S. typhi* bacterial test with the antibiotic ampicillin $10\mu g$ obtained an average inhibition zone of 23.1 ± 1.9 mm in the sensitive category (S). This indicates that in the presence of CCCP, the *S. typhi* test bacteria with the antibiotic ampicillin which initially had an inhibition zone of 8.7 ± 0.46 mm in the resistant category (R),

experienced an increase in the inhibition zone and became sensitive again. In testing with guava leaf extract, there was also an increase in the inhibition zone and a change in the category to be sensitive again at an extract concentration of 0.05% (**Table 6**). The synergism effect occurs with an increase in the inhibition zone and a change in this category. The highest concentration provides a synergistic effect between ampicillin and guava leaf extract at 0.05%.

The CCCP group on the S. typhi bacteria test with trimethoprim-sulfametoxazole 23.75-1.25 µg obtained an average inhibition zone of 17.8 ± 0.57 sensitive category (S). This indicates that in the presence of CCCP, the test bacteria S. typhi with the antibacterial trimethoprim-sulfamethoxazole, which initially had an inhibition zone of 8.2 ± 0.67 mm in the resistance (R) category, experienced an increase in the inhibition zone and became sensitive again. In testing with guava leaf extract, there was also an increase in the inhibition zone and a change in category at an extract concentration of 0.075% (table 6). The synergism effect occurs with an increase in the inhibition zone and a change in these categories. The highest concentration gave a synergistic effect between trimethoprimsulfamethoxazole and guava leaf extract. namely at 0.075%. In trimethoprimsulfamethoxazole antibiotics, the activity of bacterial efflux pumps as a cause of resistance is less influential than other resistance mechanisms²³, but recently this resistance

mechanism has been widely found, including in *Stenotrophomonas maltophilia* bacteria so that this assumption is slightly contradictory²⁴. The active efflux pump is an intrinsic resistance mechanism that can deactivate almost all antibacterials or antibiotics in almost all types of bacteria⁹.

The CCCP group on the S. typhi bacteria test with 30 µg chloramphenicol antibiotic obtained an average inhibition zone of 19.4 \pm 0.77 in the intermediate category (I). This indicates that in the presence of CCCP, the S. typhi test bacteria with the antibiotic chloramphenicol initially had an inhibition zone of 8.9 ± 0.43 mm, and the resistance (R) category experienced an increase in the inhibition zone, but the category only reached intermediate. In testing with guava leaf extract, there was also an increase in the inhibition zone and a change in category at an extract concentration of 0.05% (Table 5). The synergism effect occurs with an increase in the inhibition zone of the test antibiotics and a change in category. The highest concentration provides a synergistic effect between chloramphenicol and guava leaf extract at 0.05%.

The CCCP group on the S. typhi bacteria test with 5 µg ciprofloxacin antibiotic obtained an average inhibition zone of 32.3 ± 1.23 in the sensitive category (S). This indicates that in the presence of CCCP, the test bacteria S. typhi with the antibiotic ciprofloxacin initially had an inhibition zone of 30.7 ± 0.6 mm, the category was still sensitive (S) experienced an increase in the inhibition zone, and the category remained sensitive (S). In testing with guava leaf extract, there was also an increase in the inhibition zone at all tested extract concentrations, namely 0.01, 0.025, 0.05, 0.075, and 0.1%. The synergism effect occurs with an increase in the inhibition zone of the test antibiotics. The highest concentration provides a synergistic effect between ciprofloxacin and guava leaf extract at 0.025% (Table 6). In testing the extract against the ciprofloxacin antibiotic, it was still carried out even though the S. typhi bacteria showed a sensitive category effect to know the synergistic effect of adding the extract.

Overall, it can be seen that the ethanol extract of guava leaves (*Psidium guajava* L.) shows potential as an efflux pump inhibitor

(EPI) because after being grown with the test antibiotics, there is an increase in strength (sensitivity). This can be seen from a change in the sensitivity category for tetracycline. ampicillin, and trimethoprim-sulfamethoxazole, which were originally resistant to become sensitive again. There is a weak activity in the combination between the extract and Chloramphenicol where the originally resistant antibiotic turns into an Intermediate, and the antibiotic adjuvant added to Ciprofloxacin which was in the non-resistant category, turned out to have no effect.

Each test on each group of extracts shows that the extract has the effect of increasing the antibiotic inhibition zone, which was originally small or was in the resistant category to become sensitive again. The synergism effect occurs at (1) extract concentration of 0.1% against Tetracycline antibiotic 30 µg, (2) concentration of 0.05% against ampicillin 10 μ g, (3) concentration of 0.075% against trimethoprim-sulfametoxazole 23.75-1.25 µg, (4) concentration of 0.05 % to chloramphenicol 30 ug. (5) concentration 0.025% to ciprofloxacin 5 µg. Extract concentrations that provide synergistic effects appear to be different for different antibiotics. This still needs to be studied in more depth. Efflux pump inhibitors act by various mechanisms, including between the pump protein competition substrate and the antibiotic at the binding point.

EPI potential in this extract is suspected from the active substances of the flavonoid types quercetin, myricetin, epicatechin, and tannin compounds. These compounds have been proven in research by⁹ as EPI from natural ingredients even though the active substance was extracted from different plants and tested with other bacteria. The mechanism of action of EPI is thought to include (1) changing the molecular structure of the efflux pump so that its affinity for the drug decreases, (2) suppressing the expression of the efflux pump gene, (3) reducing the energy of the efflux pump (4) or being a competitive or noncompetitive substrate for the efflux pump^{11,25}.

Conclusion

Experimentally, ethanol extract with a concentration of 0.05% increased the sensitivity of the antibiotics tetracycline, ampicillin, and ciprofloxacin with the sensitive

category and chloramphenicol with the intermediate category. At the same time, the sensitivity of the antibiotic trimethoprimsulfamethoxazole requires effective an concentration of 0.075% to be in the sensitive category. This study illustrates that the ethanol extract of guava leaves (Psidium guajava L.) can synergize to increase antibiotic sensitivity which is thought to be an efflux pump inhibitor so that in the future, it can be further developed as a natural antibiotic adjuvant candidate.

Acknowledgement

The author would like to thank Sekolah Tinggi Ilmu Farmasi Makassar for the facilities provided to researchers in completing this research.

REFERENCES

- 1. C. J. Murray, "Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis", *Lancet*, 399(10325), 629–655 (2022).
- R. Jadimurthy, S. Jagadish, S.C. Nayak, S. Kumar, C.D. Mohan and K.S Rangappa, "Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance", *Life*, 13(4), 1-34 (2023).
- 3. C. Willyard, "The drug-resistant bacteria that pose the greatest health threats", *Nature*, 543(7643), 15 (2017)
- M. Ayaz, F. Ullah, A. Sadiq, F. Ullah, M. Ovais, J. Ahmed and H. P. Devkota, "Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance", *Chem Biol Interact*, 1(308), 294-303 (2019).
- H. Venter, "Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens", *Biosci Rep*, 39(4), BSR20180474 (2019).
- H. Nikaido and J. M. Pagès, "Broadspecificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria", *FEMS Microbiol Rev*, 36(2), 340-363 (2012).
- 7. S. Baucheron, S. Tyler, D. Boyd, M. R. Mulvey, E. Chaslus-Dancla and A.

Cloeckaert, "AcrAB-TolC directs effluxmediated multidrug resistance in Salmonella enterica serovar typhimurium DT104", *Antimicrob Agents Chemothe*, 48(10), 3729-3735 (2004).

- S. Baugh, C. R. Phillips, A. S. Ekanayaka, L. J. V. Piddock and M. A. Webber, "Inhibition of multidrug efflux as a strategy to prevent biofilm formation", *J Antimicrob Chemother*, 69(3), 673-681 (2014).
- T. Rana, S. Singh, N. Kaur, K. Pathania and U. A. Farooq, "A review on efflux pump inhibitors of medically important bacteria from plant sources", *Int J Pharm Sci Rev Res*, 26(2), 101-111 (2014).
- V. Ricci, J. M. A Blair and L. J. V. Piddock, "RamA which controls expression of the MDR efflux pump AcrAB-Tolc, is regulated by the lon protease", *J Antimicrob Chemother*, 69(3), 643-650 (2014).
- M. AlMatar, O. Albarri, E. A. Makky and F. Köksal, "Efflux pump inhibitors: new updates", *Pharmacol Rep*, 73(1), 1-16 (2021).
- U. Anand, S. Nandy, A. Mundhra, N. Das, D. K. Pandey and A. Dey, "A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms", *Drug Resist Updat*, 51, 100695 (2020).
- M. Waditzer, F. Bucar, "Flavonoids as inhibitors of bacterial efflux pumps", *Molecules*, 26(22), 6904 (2021).
- M. Stavri, L. J. V. Piddock and S. Gibbons, "Bacterial efflux pump inhibitors from natural sources", *J Antimicrob Chemother*, 59(6), 1247-1260 (2007).
- M. Kumar, M. Tomar, R. Amarowicz, V. Saurabh, M. S. Nair, C. Maheshwari, M. Sasi, U. Prajapati, M. Hasan, S. Singh, S. Changan, R. K. Prajapat, M. K. Berwal and V. Satankar, "Guava (Psidium guajava 1.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities", *Foods*, 10(4), 752 (2021).
- 16. S. Nur, A. N. Aisyah, A. Burhan, F. J. Sami, N. Nursamsiar, A. Sapra and M.

Megawati, "Authentication of Cherry (Muntingia calabura) Fruit from different Geographical Locations in Indonesia by FTIR Spectroscopy Combined with Chemometrics and Their Antioxidant and Antiaging Activities", *Egypt J Chem*, (2022).

- S. Nur, A. N. Aisah, N. Nursamsiar, F. J. Sami, A. Fadri, N. Khairi, A. Sapra, M. "Standardization and GC-MS Analysis of Kersen (Muntingia calabura L.) Fruit Ethanol Extract as an Herbal Raw Material", *Bull Pharm Sci Assiut*, 46(1), 173-187 (2023).
- Clinical and Laboratory Standards Institute, "Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. Approved standard MS100-S20", *Clin Lab Stand Institute, Wayne, PA.* (2011).
- EUCAST, "The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.12.0.Edn. EUCAST", *Eur Comm Antimicrob*, (2022),
- V. Sharma, S. Dahiya, P. Jangra, B. K. Das, R. Kumar, S. Sood and A. Kapil, "Study of the role of efflux pump in ciprofloxacin resistance in Salmonella enterica serotype Typhi", *Indian J Med Microbiol*, 31(4), 374-378 (2013).

- 21. J. M. Blair, H. E. Smith, V. Ricci, A. J. Lawler, L. J. Thompson and L. J. Piddock "Expression of homologous RND efflux pump genes is dependent upon AcrB expression: Implications for efflux and virulence inhibitor design", *J Antimicrob Chemother*, 70(2), 424-431 (2015).
- 22. S. Baucheron, F. Coste, S. Canepa, M. C. Maurel, E. Giraud, F. Culard, B. Castaing, A. Roussel and A. Cloeckaert, "Binding of the RamR repressor to wild-type and mutated promoters of the ramA gene involved in efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium", *Antimicrob Agents Chemother*, 56(2), 942-8 (2012).
- L. L. Brunton, R. Dandan-Hilal, R, B. C. Knollmann, Goodman and Gilman's, "The Pharmacological Basis of Therapeutics, Ed 13th, *McGrawHill Educ*, (2018).
- 24. M. B. Sánchez and J. L Martínez, "The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. *Antimicrob Agents Chemother*, 59(7), 4347-4348 (2015).
- M. Askoura, W. Mottawea, T. Abujamel and I. Taher, "Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa", *Libyan J Med*, 6(1), Article 5870 (2011).

Bull. Pharm. Sci., Assiut University, Vol. 46, Issue 2, 2023, pp. 1259-1268.

نشرة العلوم الصيدليـــة جامعة (أسيوط

امكانية فعالية مستخلص الإيثانول لأوراق الجوافة (بسيديم جوافة ل.) كمضاد حيوي مساعد على مرض السالمونيلا التيفية واهيو هندرارتي'* – محمد روبيانسياه' – سيامسو نور' – أستوتي أمين' – مشرون نيسا" – همداياني لاس عابدين[؛]

لقسم الصيدلة والصيدلة السريرية، سيكولاه تينجي إيلمو فارماسي ماكاسار، ٩٠٢٤٢، ماكاسار ، إندونيسيا تقسم التحليل الصيدلي والكيمياء الطبية ، سيكولاه تينجي إيلمو فارماسي ماكاسار، ٩٠٢٤٢ ، ماكاسار ، إندونيسيا

⁷قسم التكنولوجيا الصيدلانية، سيكولاه تينجي إيلمو فارماسي ماكاسار ، ^٩ • ٢ ^٤ • ، ماكاسار ، إندونيسيا • قسم البيولوجيا الصيدلانية، سيكولاه تينجي إيلمو فارماسي ماكاسار ، ^٩ • ٢ ^٤ • ، ماكاسار ، إندونيسيا

تحتوي الجوافة (بسيديم جوافة ل.) على العديد من المركبات الكيميائية، بما في ذلك كيرسيتين، ميريسيتين، إيبيكاتشين، والعفص والتي ثبت أن لها فعالية كمثبط لمضخة التدفق في العديد من البكتيريا المسببة للأمراض. هدفت هذه الدراسة إلى معرفة التأثير التآزري لمستخلص الإيثانول من أوراق الجوافة مع خمسة مضادات حيوية شائعة على عز لات السالمونيلا التيفية المعبرة عن مضخات التدفق النشطة. تم إجراء التوصيف البكتيري على العز لات السريرية لـسالمونيلا تيفي ، وتم تحديد أليات المقاومة الجزيئية باستخدام تفاعل البوليمير از المتسلسل اللحظي الكمي عن طريق قياس التعبير عن مضخة تدفق بروتين مقاومة الأكريفلافين. تم استخلاص أوراق الجوافة عن طريق النقع باستخدام ٧٠% الإيثانول. تم إجراء الاختبارات باستخدام طريقة الانتشار مع التتراسيكلين والأمبيسلين وتريميثوبريم-سلفاميثوكسازول والكلور امفينيكول والسيبر وفلوكساسين. تم عمل المستخلص بتركيـزات متسلسلة ٥,٠١، ٢٥، ٠,٠٠، ٥،،٠، ٥،، ٠، ١، ٠، أظهرت النتائج أن العز لات المختبرة قللت من تعبير مضخة تدفق بروتين مقاومة الأكريفلافين من ١١,٤٨١٦٧ إلى ٧,٣٨٨١٨ بيكو جرام أ ملى بعد إضافة CCCP. حدث التأثير التآزري عند (١) تركيز المستخلص ٠,١% ضد التتراسيكلين ٣٠ ميکروجرام، (۲) ترکيز ۰٫۰۰% ضد أمبيسلين ۱۰ ميکروجرام، (۳) ترکيز ۰٫۰۷۵ ضد تريميثوبريم- سلفاميثوكسازول ٢٣,٧٥-٢٩,٧ ميكروجرام، (٤) تركيز ٠,٠٥ % ضد كلور امفينيكول ۳۰ میکروجرام، (٥) ترکیز ۰,۰۲۵% ضد سیبروفلوکساسین ٥ میکروجرام. تـم دمـج مستخلص الإيثانول من أوراق الجوافة (بسيديم جوافة ل.) مع المضادات الحيوية المدروسة وأظهر نشاطًا مثبطًا لمضخة التدفق. وبالتالي، فإنه يمكن أن يكون بمثابة مرشح مساعد المضادات الحيوية الطبيعية.