

Bulletin of Pharmaceutical Sciences Assiut University Website: http://bpsa.journals.ekb.eg/

INCRETIN-BASED THERAPY AND CANCER: ARE THEY ENEMIES OR ALLIES?

Sandy R. Botros, Asmaa I. Matouk, Gehan H. Heeba*

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt

The link between cancer and diabetes is established but not fully understood. Incretinbased therapy has been increasingly used in the past decade for the management of type 2 diabetes mellitus (T2DM). A link between incretin pathway and cancer has been proposed. Still a debate in the scientific committee is rising whether incretin-based therapy has beneficial or harmful effects on patients with malignant diseases or at risk of malignancy. This review summarizes the published preclinical and clinical research discussing incretin-based therapy and cancer. Except for pancreatic cancer, thyroid cancer, and cholangiocarcinoma, the published data agree that incretin-based therapy has either a beneficial or zero effect on the risk of malignancy. Regarding pancreatic cancer, there are case reports of pancreatic cancer after receiving incretin-based drug therapy but the lag time for tumorigenesis is questionable. To date, meta-analyses agreed that no increased incidence of pancreatic cancer was observed among users of incretin-based therapy. Whether incretin-based therapy increases the risk of thyroid cancer is controversial therefore it is advisable to avoid prescribing glucagon-like peptide-1 receptor agonists (GLP-1RAs) for patients with high risk for thyroid cancer. Despite the numerous studies published about incretins and cancer, it is still a rich area for further research

Keywords: Cancer; Incretin; Glucagon-like peptide-1; Dipeptidyl peptidase 4 inhibitors; Type 2 diabetes mellitus

INTRODUCTION

Cancer is one of the leading causes of death worldwide as it was reported to be responsible for about 10 million deaths in 2020 by the international agency for research on cancer ¹. It is worth mentioning that around 18% of cancer patients worldwide are diabetics but the percentage can vary depending on the population and cancer type².

Diabetes mellitus is an alarming growing health problem that affects around 540 million people worldwide and this number is expected to increase to 783 million by the year 2045. About 90% of those patients suffer from type 2 diabetes mellitus (T2DM)³. Studies have observed an increased risk of different types of cancer in diabetic patients including breast, lung, endometrial, bladder, stomach, pancreas, liver, and colorectal cancer with 11% higher mortality compared to non-diabetics⁴. Several studies have investigated the underlying mechanisms associated with increased risk of cancer in diabetic patients including hyperinsulinemia, insulin resistance, increased oxidative stress and inflammation⁴.

Incretins, including glucagon-like peptideglucose-dependent (GLP-1) and 1 insulinotropic polypeptide (GIP) released from L-cells and K-cells, respectively, are peptides meal-stimulated that potentiate insulin secretion, in addition to other effects as summarized in Fig. 1. These peptides have a very short half-life owing to their degradation by dipeptidyl-peptidase 4 (DPP-4) enzyme and their renal clearance⁵.

Received : 1/8/2024 & Accepted : 24/9/2024

^{*}Corresponding author: Gehan H. Heeba, E-mail: ghhh70@yahoo.com

Fig. 1: Effect of glucagon-like peptide-1 in different organs, modified from⁵.

In the past decade, incretin-based therapy has been increasingly used for the management of T2DM. Incretin-based therapy includes potentiation of endogenously secreted incretins by inhibiting DPP-4 and using glucagon-like peptide-1 receptor agonists (GLP-1RAs). These drugs were introduced into clinical practice starting from 2006 after FDA approval of exenatide and sitagliptin^{6, 7}. They are widely used because of their beneficial effect on glycemic control, beta-cell functions, blood lipids level and blood pressure in addition to their few side effects and low risk of hypoglycemia⁸.

GLP-1 receptors are widely expressed in many tissues besides the pancreas including kidneys, lungs, cardiovascular and central nervous systems, gastrointestinal tract, as well as the skin⁹. In addition,, GLP-1R is also found in some tumors such as thyroid cancer, pheochromocytoma, insulinoma, and brain tumors ¹⁰. Regarding expression of DPP-4, it is found in kidneys, vascular endothelial cells, hepatocytes, and intestinal mucosal cells. It is also found in a soluble form in plasma, bile, cerebrospinal fluid, seminal fluid, and synovial fluid. In addition, it is expressed on immune cells as natural killer cells, T-cells, B-cells, and macrophages. For its role in the immune system, it is also known as CD-26¹¹. Studies have found that DPP-4 expression is increased in some cancers such as acute leukemia ¹², lung papillary adenocarcinoma, prostate cancer, hepatocellular carcinoma, brain tumors, thyroid cancer, and breast cancer, while decreased in some other types of cancer as melanoma, endometrial adenocarcinoma, Sezary syndrome and squamous cell carcinoma¹³.

Incretin-based therapy and pancreatic cancer

GLP-1R activation can lead to pancreatic cancer, where the hypothesis came from, and is it true?

Since the use of GLP1RAs such as liraglutide and exenatide have been linked to clinical cases of pancreatitis^{27, 28}, a hypothesis suggesting that activation of GLP1Rs can cause pancreatitis and may even lead to pancreatic cancer after long-term use has come to the surface. This was based on the studies linking chronic pancreatitis with an increased risk of pancreatic cancer²⁹. developing Chronic inflammation and pancreatic duct stenosis with increased intraductal pressure can lead to pancreatic cancer ³⁰. This has been established in chronic pancreatitis, but not in cases of acute pancreatitis. This finding is in favor of GLP1RAs as most cases of pancreatitis reported with the use of GLP1RAs were acute not chronic³¹. In this review, we will discuss the studies both preclinical and clinical that either prove or decline the hypothesis that incretin-based therapy can increase the risk of developing cancer.

 Table 1: Approved and under-investigations glucagon-like peptide-1 receptor agonists (GLP1RAs).

GLP-1RA	Trade Name	Half-life	Dose	Approval Date	Administration
Exenatide ⁶	Byetta®	2.4 h	5 µg-10 µg	28 April 2005 (FDA)	Before meal BID (S.C)
Exenatide- extended release ¹⁴	Bydureon®	2 weeks	2 mg	27 Jan 2012 (FDA)	Once weekly (S.C)
Exenatide- osmotic mini- pump ¹⁵	Itca-650®		20-60 µg/day	Not approved yet	subcutaneous delivery via an osmotic mini pump surgically placed under the skin
Liraglutide ¹⁶	Saxenda® Victoza®	13 h	0.6mg, 1.2mg, 1.8mg, 2.4mg, 3mg	For obesity: 23 Dec 2014(FDA) 23 March2015(EMA) For T2DM: 25 Jan 2010 (FDA) 30 June 2009 (EMA)	Once daily (S.C)
Albiglutide ¹⁷	Tanzeum®	6-8 days	30 mg, 50 mg	15 April 2014 (FDA)	Once weekly (S.C)
Dulaglutide ^{18, 19}	Trulicity®	5.5 days	0.75 mg, 1.5 mg, 3 mg, 4.5 mg	18 Sep 2014 (FDA) 21 Nov 2014 (EMA)	Once weekly (S.C)
Semaglutide ²⁰	Ozempic® Wegovy®	7 days	0.25 mg, 0.5mg,1mg, 2mg 0.25mg, 0.5mg,1mg,1. 7m, 2.4mg	For T2DM: 5 Dec 2017 (FDA) 8 Feb 2018 (EMA) For obesity: 4 June 2021 (FDA) 6 Jan 2022 (EMA)	Once weekly (S.C)
Semaglutide ²⁰	Rybelsus®	7 days	3mg, 7mg, 14mg	20 Sep 2019 (FDA) 3 April 2020 (EMA)	Oral (on empty stomach)
Geniposide ²¹				Not approved	
Efpeglenatide ²²		5.6-7.5 days		Not approved yet	Once weekly (S.C)
Lixisenatide ^{23, 24}	Lyxumia® Adlyxin®	3 h	10 µg-20 µg	31 Jan 2013 (EMA) 28 July 2016 (FDA)	Once daily (S.C)
Tirzepatide (dual agonist for GIP and GLP1 receptors) ^{25, 26}	Mounjaro®	5 days	2.5 mg, 5 mg, 7.5 mg, 10 mg, 12.5 mg, 15 mg	13 May 2022 (FDA) 15 Sep 2022 (EMA)	Once weekly (S.C)

Preclinical studies

Inconsistent findings were observed when different cell lines or different GLP-1 agonists were used. Both exendin-4 and liraglutide induced proliferation of INS-1 cells^{32, 33}, while in human pancreatic cancer cell lines, liraglutide showed an anti-proliferative effect and exenatide had no effect ³⁴⁻³⁶. Since liraglutide induced apoptotic cell death of malignant cells both *in vitro* and *in vivo* (in human pancreatic cancer cell line and mouse xenograft model), treatment with liraglutide may even be beneficial in diabetic patients with pancreatic cancer. It also increased the chemosensitivity of pancreatic cancer to gemcitabine in addition to its antiproliferative effect³⁵⁻³⁷. Many causes may contribute to this discrepancy including different types of cells used, different cell origins (rodents vs. human), and different agonists.

It is worth mentioning that studies by Vrang et al.³⁸ and Nyborg et al.³⁹ failed to observe any preneoplastic pancreatic lesions or increased risk of pancreatitis even after using much higher doses of liraglutide than those used clinically. Regarding sitagliptin, Matveyenko et al.⁴⁰ observed that sitagliptin induced ductal proliferation and metaplasia. However, Aston-Mourney et al.⁴¹ reported no evidence of pancreatitis, altered ductal proliferation or metaplasia after much longer duration (1 year vs. 12 weeks). Their results were later confirmed by Forest et al.⁴² who reported that neither pancreatitis nor any adverse pancreatic effects were associated with treatment with sitagliptin.

The previously described pathological changes in some rodent studies were not supported by nonhuman primate studies as treatment with either liraglutide or semaglutide, for 87 weeks and 52 weeks, respectively, was not associated with any adverse effects on the pancreas⁴³.

Clinical studies

In 2020, a case report of pancreatic cancer after using liraglutide was published. However, the causality could not be confirmed as the patient had many other risk factors for pancreatic cancer including uncontrolled diabetes, smoking, alcohol consumption, and chronic pancreatitis. In addition, the patient used other medications and also used liraglutide for only 20 months, which seems a short time for developing cancer⁴⁴.

Gokhale et al.⁴⁵, after analyzing data from US Medicare claims, concluded that no increased risk of pancreatic cancer was associated with DPP4 inhibitors after 18 month follow-up period compared to sulfonylureas (SU) and thiazolidinediones. Furthermore, the risk was even lower when compared to SU users. Similar results were obtained from the Korean health insurance services revealing no increased risk of pancreatic cancer among DPP4I users after 8 years of follow-up⁴⁶.

Monami et al. conducted two metaanalyses evaluating the safety of DPP4 inhibitors and GLP-1R agonists, analyzing results of 53 randomized controlled trials (RCT) (24 weeks or longer) and 113 RCT (11 weeks or longer), respectively, enrolling more than 20,000 DPP4Is users and more than 33000 GLP-1R agonist users. They concluded that neither the use of GLP-1RAs nor DPP-4 inhibitors increased the risk of developing pancreatitis or pancreatic cancer^{47, 48}. Later in 2023, in collaboration with other investigators, they published an updated meta-analysis evaluating the risk of pancreatitis and pancreatic cancer in GLP-1RAs users analyzing 43 RCT (only those with 52 weeks duration or longer were included) and drew the same conclusion⁴⁹.

Pinto et al. ⁵⁰ conducted a meta-analysis to evaluate the risk of pancreatic cancer associated with DPP4Is use, they found no association between DPP4Is and pancreatic cancer, but observed a trend towards increased risk of acute pancreatitis, but the sample size was not enough to draw a conclusion. Another meta-analysis enrolling 11 cardiovascular outcome trials (CVOTs) agreed with Nreu et al. ⁴⁹ that both GLP-1R agonist users and DPP4Is users did not show an increased risk for pancreatic cancer but disagreed with them in estimating the risk of pancreatitis as they reported an increased risk of acute pancreatitis among DPP4 inhibitor users ⁵¹ as previously reported by Pinto et al.

Cao et al. published a meta-analysis in 2020 stating that treatment with GLP-1RAs did not increase the risk of pancreatitis or pancreatic cancer⁵². Conclusively, after reviewing till date published data, regarding pancreatic cancer, despite the published cases of pancreatic cancer after incretin-based drug therapy, it remains uncertain if these cases are due to incretin-based therapy as the time between exposure and diagnosis is not enough for tumorigenesis. In addition, all metaanalyses and population-based cohort studies reported no increase in pancreatic cancer among users of GLP-1RAs and DPP4Is. It remains controversial if incretin-based therapy can induce acute pancreatitis. Meta-analyses agreed that no increased incidence of acute pancreatitis was associated with GLP-1RAs, but they disagreed on the risk of pancreatitis associated with DPP4Is as Abd El Aziz et al. and Pinto et al.^{50, 51} observed an increased risk of acute pancreatitis after DPP4Is therapy while Monami et al.47 reported no increased risk so it remains controversial and further studies are needed to confirm or reject the hypothesis that incretin-based therapy can induce acute pancreatitis. However, the benefits of using incretin-based therapy still outweigh any risk reported.

Incretin-based therapy and thyroid cancer *Preclinical studies*

It was reported that there is a difference between human and rat thyroid cells as the latter express more GLP-1R^{53, 54}. Contrarily, Gier et al. ⁵⁵ reported observing GLP-1R expression in normal human thyroid tissue in addition to C-cell hyperplasia, medullary and papillary thyroid cancer, raising concerns about the risk of developing thyroid cancer after long-term incretin-based therapy. However, Pyke et al.⁵⁶ using specific antibodies reported that GLP-1R was not expressed in normal thyroid cells in humans. These different observations may be explained by lack of specificity of the used antibodies. Bjerre Knudsen et al.⁵³ reported that 20 months liraglutide treatment was not associated with any change in plasma calcitonin level or C-cell hyperplasia in monkeys (even with doses 60 times greater than the human dose) in contrast to what was observed in rodents. Additionally, sitagliptin induced apoptosis and reduced the proliferation of thyroid carcinoma both in vitro and in vivo^{57, 58}.

Clinical studies

Hegedüs et al. reported that no correlation was observed between serum calcitonin level, which is a marker for C-cell hyperplasia and medullary thyroid carcinoma, and liraglutide treatment after reviewing clinical trials enrolling more than 5000 patients receiving liraglutide (both diabetic patients and nondiabetic obese subjects)⁵⁹.

In a case-control study conducted in the French population, an increased risk of thyroid cancer was observed after 1-3 years of treatment with GLP-1R agonists⁶⁰. However, this study has limitations that may influence the interpretation of its result in clinical practice, including over diagnosis and detection bias, lack of adjustment for family history and obesity which are established risk factors for developing thyroid cancer, and short latency period ⁶¹. Additionally, a pharmacovigilance study found an association between GLP-1RAs use and thyroid tumors; GLP-1RAs use was associated with increased risk of thyroid tumors but the causality could not be confirmed, further studies are needed to confirm a cause-and-effect relationship between GLP-1RAs and thyroid tumors⁶².

On the other hand, a meta-analysis of RCTs concluded that the risk of thyroid disorders including thyroid cancer was not increased with GLP-1RAs⁶³. In addition, a prospective study evaluating the safety of alogliptin reported that no increased risk of any malignancy including thyroid cancer was observed after 3 years⁶⁴.

Conclusively, the clinical decision of whether to use or not to use incretin-based therapy should be based on risk-benefit ratio especially since the incidence of thyroid cancer remains rare and is associated with low mortality. However, it may be more prudent to avoid the use of GLP-1RAs in patients with risk factors of thyroid cancer while encouraging more research to further understand the relation between thyroid cancer and incretin-based therapy.

Incretin-based therapy and colorectal cancer

GLP-1Rs are expressed in the GIT of humans and monkeys¹⁰. Jin hypothesized that GLP-1R overactivation may increase the risk of colon cancer in diabetic patients ⁶⁵. However, later preclinical and clinical studies negated his hypothesis. In vitro and in vivo studies conducted on liraglutide, exendin-4, sitagliptin, and vildagliptin showed beneficial effects of incretin-based therapy on colorectal cancer as it decreased tumorigenesis, angiogenic ability, invasiveness, and metastasis 66-71. In addition, clinical studies⁷² proved that both GLP-1RAs and DPP4Is did not increase the risk of colorectal cancer. Further, clinical studies revealed that DPP4Is were associated with better prognosis and improved survival⁷³⁻⁷⁵. It is worth mentioning that in a nested case-control study, the risk of colorectal cancer in diabetic patients receiving DPP4Is was dependent on the dose as low doses were associated with reduced risk, while higher doses increased the risk this may be explained by the antiangiogenic effect of DPP4Is, which resembles the J-shaped dose-response curve of other antiangiogenic agents, by modulating plasminogen activator inhibitor-1. In addition, this complex response may also be related to the wide variety of DPP4 substrates such as stromal cellderived factor 1 (SDF-1), and substance P and the role of DPP4 enzyme in the immune system

as severe inhibition of the enzyme may help cancerous cells evade the immune detection⁷⁶.

Incretin-based therapy, hepatocellular carcinoma (HCC) and cholangiocarcinoma

In vitro and in vivo studies conducted on liraglutide showed that liraglutide enhanced the antitumor immune response and protected against nonalcoholic steatohepatitis (NASH) and HCC^{77, 78}. It also showed antiproliferative HCC⁷⁹, against effects the same antiproliferative effect was also observed using exenatide⁸⁰. In addition, DPP4Is increased the chemotaxis of natural killer cells and Tlymphocytes, and suppressed the angiogenesis⁸¹. Sitagliptin showed an antitumor effect against diethyl nitrosamine-induced liver cancer⁸². Vildagliptin also prevented high-fat diet induced HCC^{83} . The same antitumor effect was observed using a pan DPP inhibitor, ARI-4175⁸⁴. Further, anagliptin protected against liver fibrosis and HCC independent of its effect on glucose and lipid metabolism in genetically obese mice⁸⁵. Clinically, users of DPP4Is showed lower risk of developing HCC in the presence of chronic hepatitis B and hepatitis $C^{86, 87}$

On the other hand, the incidence of cholangiocarcinoma, bile duct cancer, was higher among users of incretin-based therapy compared to SU and thiazolidinediones⁸⁸.

Incretin-based therapy and breast, endometrial, ovarian, and cervical cancer

Liraglutide increased the proliferation of breast cancer cells in vitro and in vivo^{89, 90} while exendin-4 inhibited the growth of breast cancer both in vitro and in vivo and may even have a therapeutic benefit as it may also migration^{91, 92}. and modulate invasion Sitagliptin inhibited the proliferation of MCF7 cells and suppressed the tumor development in vivo⁹³ while inhibition of DPP4 by KR62436 promoted the survival of breast cancer cells⁹⁴. In addition, studies by Li et al. showed that sitagliptin and saxagliptin may facilitate the metastasis of breast cancer using murine cell line ⁹⁵. However, in a population-based cohort study, GLP-1RAs did not increase the risk of breast cancer⁹⁶. The same result was proved later in the meta-analysis by Piccoli et al. after analyzing 52 RCTs enrolling more than 48 thousand GLP-1RA users⁹⁷. To date, all

available clinical data reveal that incretin-based therapy does not increase the risk of developing breast cancer; however, caution must be taken when prescribing incretin-based therapy to breast cancer patients due to concerns of increased survival and metastasis of malignant cells observed in preclinical studies.

Regarding female reproductive system cancers, incretin-based therapy has mostly a beneficial rather than harmful effect. Exendin-4 prevented the growth of cervical cancer induced by hyperglycemia in vivo and in vitro⁹⁸, it also decreased the resistance of endometrial cancer to cisplatin chemotherapy 99 . Exenatide also decreased the migration and induced apoptosis of ovarian cancer¹⁰⁰. Similar results were obtained by He et al. as they showed that exendin-4 may have antitumor effects on ovarian cancer both in vitro and in vivo¹⁰¹. Sitagliptin suppressed the growth of endometrial carcinoma in vitro and in vivo^{102,} ¹⁰³ while enhancing the migratory ability of cervical cancer cells in vitro¹⁰⁴. It also improved the response of ovarian cancer cells to paclitaxel chemotherapy in vitro¹⁰⁵.

Incretin-based therapy and prostate cancer

In preclinical studies, exendin-4 showed antiproliferative effects on prostate cancer cells expressing GLP-1R in vivo and in vitro ¹⁰⁶ and when it was combined with metformin, it produced a synergistic effect 107. Later, the same effect was obtained by Li et al. by using exenatide and liraglutide¹⁰⁸. In addition, exendin-4 also enhanced the radiosensitivity of prostate cancer cells¹⁰⁹. In clinical studies, GLP-1RAs showed protective effect against prostate cancer compared to SU and basal insulin^{110, 111}. Additionally, DPP4Is reduced the risk of prostate cancer compared to SU¹¹⁰ but failed to improve the progression-free survival in patients with advanced stage prostate cancer compared to metformin¹¹².

Incretin-based therapy and lung cancer

A previous *in vivo* study showed that vildagliptin suppressed the growth of lung cancer¹¹³. In another *in vivo study*, anagliptin increased the efficacy of PD-L1 antibody against non-small cell lung cancer¹¹⁴. In addition, DPP4Is improved the clinical outcomes in patients receiving immune checkpoint inhibitors without increasing the adverse effects¹¹⁵.

Other cancers

The beneficial effects of incretin-based therapy have been reported in many tumors; exendin-4 suppressed the migration of glioma cells GLP-1R-dependent pathway¹¹⁶, sitagliptin suppressed the growth of gastric cancer cells, as well as melanoma^{117, 118}, it also decreased the number of intestinal tumors¹¹⁹.

It was found that the aggressiveness of urothelial carcinoma was correlated with DPP4 expression and DPP4 knockdown induced apoptosis of urothelial carcinoma cells ¹²⁰. Therefore, inhibition of DPP4 by different available DPP4Is may be of a therapeutic benefit but this is still a gap for further research.

In a cohort study conducted in the UK, GLP-1RAs did not increase the risk of developing skin cancer¹²¹. On the other hand, a case study was published in 2015 linking saxagliptin usage and serotonin level and indicating a possible relation between DPP4Is use and the activity of carcinoid tumors¹²².

Incretin-based therapy in preclinical and clinical studies a-Glucagon-like peptide-1 receptor agonists in preclinical studies.

Study	Agent used	Cancer type	Outcomes
In vitro study using NCI-H661 and LOVO cell lines ⁶⁶	Liraglutide	Colorectal cancer	Liraglutide resulted in inhibition of cell proliferation as well as migration and invasion. Also, it induced apoptotic cell death. These effects were mediated by modulating PI3K/Akt/mTOR signaling pathway.
<i>In vivo</i> study ⁹⁰	Liraglutide	Breast cancer	High dose liraglutide increased the proliferation and migrative ability of breast cancer cells. These effects were owing to the observed overexpression of GLP1R in breast cancer.
In vitro study99	Exendin-4	Endometrial cancer	Exendin-4 decreased resistance to cisplatin chemotherapy induced by hyperglycemia
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ⁹⁸	Exendin-4	Cervical cancer	Hyperglycemia may promote cervical cancer growth this effect was blocked by exendin-4.
In vitro study ⁸⁹	Liraglutide	Breast cancer	Liraglutide may promote or inhibit the growth of triple negative breast cancer cells depending on the concentration
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ⁷⁷	Liraglutide	Hepatocellular carcinoma	Liraglutide enhances the antitumor immune response both <i>in vivo</i> and <i>in vitro</i> ; this antitumor effect was mediated by natural killer cells.
In vivo study ⁷⁸	Liraglutide	Hepatocellular carcinoma	Liraglutide has a protective effect against NASH and HCC.
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ³⁷	Liraglutide	Pancreatic cancer	GLP1RAs may be beneficial for diabetic patients with pancreatic cancer, especially those with gemcitabine- resistant pancreatic cancer. As it enhances the chemosensitivity of malignant cells to gemcitabine and possesses antiproliferative and proapoptotic effects.
In vitro study ⁸⁰	Exenatide	Hepatocellular carcinoma	Exenatide possesses antiproliferative effects against hepatocellular carcinoma.
In vitro study ¹¹⁶	Exendin-4	Glioblastoma	Exendin-4 suppressed the migration and invasion of glioma cells via GLP1R/SIRT3 pathway.
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ¹⁰⁹	Exendin-4	Prostate cancer	Exendin-4 enhanced the radiosensitivity of prostate cancer
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ⁹¹	Exendin-4	Breast cancer	Exendin-4 inhibited the growth of breast cancer through inhibiting NF- κ B activation.
In vitro study ¹⁰⁰	Exenatide	Ovarian cancer	Exenatide decreased migration and induced apoptosis via activation of caspases. It may also be beneficial in terms of metastasis.

In vitro study ⁷⁹	Liraglutide	Hepatocellular carcinoma	Liraglutide showed antiproliferative effect and induced autophagy and cellular senescence by inducing TGF-β1
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ¹²³	Exendin-4	Colon cancer	GLP1R was not expressed in human colon cancer cells. Exendin-4 neither increased the proliferation of colon cancer cells nor decreased anticancer effect of cytotoxic agents.
In vitro study ¹⁰⁸	Exenatide and liraglutide	Prostate cancer	GLP1RAs possess antiproliferative effect on prostate cancer cells.
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ¹⁰¹	Exendin-4	Ovarian cancer	Exendin-4 may have antitumor effects on ovarian cancer as it induced apoptotic death of cancer cells in addition to inhibiting cellular proliferation, and invasion.
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ¹⁰⁷	Exendin-4	Prostate cancer	Exendin-4 inhibited prostate cancer growth. In addition, it also possessed a synergistic effect when combined with metformin.
In vitro study ⁹²	Exendin-4	Breast cancer	Exendin-4 may have a therapeutic benefit in treatment of breast cancer as it possesses anticarcinogenesis effect by modulating apoptosis, invasion, and migration.
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ¹⁰⁶	Exendin-4	Prostate cancer	Exendin-4 has an antiproliferative effect on prostate cancer.
<i>In vivo</i> and <i>in vitro</i> study ³⁶	Liraglutide	Pancreatic cancer	Liraglutide induced apoptosis of cancer cells and inhibited the growth of pancreatic cancer both <i>in vitro</i> and <i>in vivo</i> .
<i>In vivo</i> and <i>in</i> <i>vitro</i> study ³⁵	Liraglutide	Pancreatic cancer	Liraglutide has anticarcinogenesis effect and inhibits metastasis of pancreatic cancer through PI3K/Akt pathway

b-Dipeptidyl peptidase 4 inhibitors in preclinical studies.

Study	Agent used	Cancer type	Outcomes
<i>In vivo</i> study using LLC and H460 cell lines in mice ¹¹³	Vildagliptin	Lung cancer	Vildagliptin ameliorated lung cancer growth
<i>In vitro</i> and <i>in vivo</i> study ⁶⁷	Sitagliptin and vildagliptin	Colon cancer	DPP4Is decreased the <i>in vitro</i> angiogenic ability of HUVECs which led to <i>in vivo</i> reduction in tumor size and micro vessel density
In vitro study 57	Sitagliptin	Thyroid cancer	Sitagliptin reduced cell proliferation of thyroid carcinoma <i>in vitro</i> in addition to stimulating the apoptosis
In vitro study ¹²⁰	No drug used	urothelial carcinoma	DPP4 expression was found to be correlated with aggressiveness of UC, enhanced invasive ability and worse clinical outcomes. In addition, DPP4 knockdown induced apoptosis in UC cell lines.
In vitro study ⁷¹	Sitagliptin	Colorectal cancer	Sitagliptin reduced the invasiveness of CRC cell lines
In vivo study ¹¹⁴	Anagliptin	Non-small cell lung cancer	Anagliptin increased the efficacy of PD-L1 antibody0020
In vitro study ¹⁰⁵	Sitagliptin	Ovarian cancer	Sitagliptin improved the ovarian cancer cells response to paclitaxel
In vivo study ⁶⁸	Vildagliptin	Colorectal cancer	Vildagliptin decreased not only the incidence but also the growth of lung metastasis
<i>In vivo</i> study using mouse xenograft model ⁵⁸	Sitagliptin	Thyroid cancer	Sitagliptin reduced tumor growth.

h			
<i>In vivo</i> and <i>in vitro</i> study ⁸¹	Anagliptin and vildagliptin	Hepatocellular carcinoma	DPP4 inhibitors showed antitumor effects via increasing the chemotaxis of natural killer cells and T-lymphocytes. They also decreased tumor angiogenesis. In addition, the researchers reported the correlation between serum DPP4 activity and bad prognosis in HCC patients.
<i>In vivo</i> study using diethyl nitrosamine to induce liver cancer in rats ⁸²	Sitagliptin	Liver cancer	Sitagliptin showed antitumor effect by inhibiting the expression of NF- κ B
In vitro study ¹⁰⁴	Sitagliptin	Cervical cancer	Sitagliptin enhanced the migratory ability of cervical cancer cells
<i>In vivo</i> and <i>in vitro</i> study ⁹³	Sitagliptin	Breast cancer	Sitagliptin inhibited the proliferation of MCF7 cells. Further, inhibiting DPP4 enzyme using sitagliptin suppressed the tumor development in the <i>In vivo</i> model
In vitro study ¹¹⁷	Sitagliptin	Gastric cancer	DPP4 may function as a growth factor for stimulating the proliferation of scirrhous gastric cancer (SGC) cells while sitagliptin suppressed this growth promoting effect
In vivo study 83	Vildagliptin	Hepatocellular carcinoma	Treatment with vildagliptin prevented high-fat diet induced HCC.
<i>In vitro</i> and <i>in vivo</i> study ¹⁰²	Sitagliptin	Endometrial carcinoma	Inhibition of DPP4 with sitagliptin suppressed endometrial carcinoma progression
In vivo study ⁸⁴	ARI-4175 (pan DPP inhibitor)	Hepatocellular carcinoma	Pan DPP inhibitor may have antitumor effect against HCC
<i>In vitro</i> and <i>in vivo</i> study ⁹⁴	KR62436	Breast cancer	DPP4 inhibition promotes the survival of breast cancer cells by enhancing autophagy via CXCL12/CXCR4/mTOR/HIF-1α pathway while cotreatment with metformin counteracts this undesirable effect
<i>In vitro</i> study on colorectal cell line ⁶⁹	Sitagliptin and vildagliptin	Colorectal cancer	Both sitagliptin and vildagliptin showed a significant anti-cancer effect against colorectal cancer. Further, sitagliptin was more potent than vildagliptin.
In vivo study ¹¹⁸	Sitagliptin	Melanoma	Inhibition of DPP4 activity by sitagliptin reduced tumor growth. It also decreased the number of metastatic lesions into the lung.
<i>In vivo</i> and <i>in vitro</i> study ⁹⁵	Sitagliptin and saxagliptin	Breast cancer	Sitagliptin and saxagliptin may facilitate the metastasis of breast cancer.
In vitro study ¹⁰³	Sitagliptin	Endometrial carcinoma	Sitagliptin inhibited the growth of endometrial cancer cells.
<i>In vivo</i> study using genetically obese melanocortin 4 receptor-deficient (MC4R-KO) mice ⁸⁵	Anagliptin	Hepatocellular carcinoma	Anagliptin prevented the development of liver fibrosis and hepatocellular carcinoma independent on its effect on glucose and lipid metabolism.
In vivo study ¹¹⁹	Sitagliptin	Intestinal tumors	Sitagliptin treatment numerically decreased the number of intestinal tumors in high-fat diet fed $Apc^{Min/+}$ mice.
In vivo study ⁷⁰	Sitagliptin	Colorectal cancer	Sitagliptin treated mice showed suppressed colon cancer tumorigenesis

State Altiguinde Clinetry type Outcomes Altiguinde Altiguinde Control (Control) Outcomes Retrospective cohort study ¹⁰ Clinetry (Control) Prostate cancer Showed a decreased risk of developing prostate cancer Retrospective cohort study ¹² GLP1RAs Colorectal cancer GLP1RAs use did nor increase the risk of colorectal cancer Meta analysis ²¹ Ixisenatide, Iraglutide, asemglutide Pancreatic cancer malignancy No increased risk of pancreatic cancer, nor any other malignancies nor even activity in UK ¹²¹ Cohort study in UK ¹²¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semglutide Skin cancer Cohort study in UK ¹²¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semglutide Skin cancer Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAs Prostate cancer Meta-analysis of radomized GLP1RAs All lypes Meta-analysis of radomized GLP1RAs Thyroid cancer Mata-analysis of radomized GLP1RAs Thyroid cancer Analysis of real- word GLP1RAs Thyroid cancer Analysis of real- word GLP1RAs Several types GLP1RAs <th>64 J</th> <th></th> <th>Company from a</th> <th>Ontermer</th>	64 J		Company from a	Ontermer
Anogenited, dungunde, exenatide, imgluitide, insernaturitide, and semagluitideProstate cancerCompared to sunotytures, OLY RAS showed a decreased risk of developing prostate cancerMeta analysis ²¹ GLPIRAsColorectal cancerGLPIRAs use did not increase the risk of colorectal cancerMeta analysis ²¹ lixisenatide, liraghuide, exenatide, dulaghuide, and semaghuidePancreatic cancer and any other malignancyNo increased risk of pancreatic cancer, not any other malignancies nor even acute pancreatific were observed (in both individual statifica and semaghuideCohort study in LK ²¹ Exenatide, dulaghuide, liragluide, lixisenatide, and semaghuideSkin cancerNo increased risk of developing skin cancer.Cohort study in Denmark ¹¹¹ Exenatide, dulaghuide, liragluide, lixisenatide, and semaghuideSkin cancerNo increase in line were, painters receiving GLPIRAs may have a portective effect against prostate cancer, comparison to SU users, patients receiving GLPIRAs any have a portective effect against prostate cancer, comparison to sobserved between, notable relation was observed between, notable relation was observed between, ontable relation was observed between, optimation cancer sobserved in the free cancerDisproportionali ty analysis based on FAERS ¹²² GLPIRAsThyroid cancerGLPIRAs and cancer sobserved with optimation covered of thyroid cancer was observed between, ontable relation was observed between, optimation covered on the free cancer ontrol study ⁶⁰ Meta-analysis of randomized dualskis of randomized control study ⁶¹ GLPIRAsPancreatic cancerMeta-analysis of random	Study	Albightide deleghtide	Cancer type	Company data militarrahumana CL D1D An
Retrospective cohort study ¹⁰⁰ exmapletide, oral semagluide, oral semagluide, oral semagluide Prostate cancer showed a decretaised task of developing prostate cancer Retrospective cohort study ²¹⁰ GLP1RAs Colorectal cancer GLP1RAs use did not increase the risk of colorectal cancer Meta analysis ³¹ Ixisenatide, liragluide, abigutide, and semagluide Pancreatic cancer malignancy No increased risk of pancreatic cancer, nor any other malignancies nor even and any other malignancy Cohort study in UK ¹²¹ Exenatide, dulagluide, irragluide, lixisenatide, and semagluide Skin cancer In comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer. Cohort study in UK ¹²¹ Exenatide, dulagluide, liragluide, lixisenatide, and semagluide Prostate cancer After 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insulin use: this protective effect against prostate senacer, compared to busal insulin use: this protective effect against prostate cancer, contared to busal insulin use: this protective effect against prostate cancer, compared to busal insulin use: this protective effect against prostate cancer, contared to busal insulin user, stet cell neoplasm and neuroendocrine tumors. Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAs Thyroid cancer No increased risk of thyroid cancer, istet cell neoplasm and neuroendocrine tumors. Meta-analysis of randomized control study ⁶⁰ GLP1RAs Several type		Albigiutide, dulagiutide,		Compared to suitonylureas, GLPTRAS
cohort studyINSERIATE, and semaglutide, and semaglutide, and semaglutide, and semaglutide, and semaglutide, and abiglutide, and semaglutide, and generatic cancer and any other malignances on reven and any other malignances on reven analysis of randomized control study/inColorectal cancerNo increased risk of pancreatic cancer, no rany other malignancies nor even and any other malignances on reven analysis of randomized control study/inNo increased risk of pancreatic cancer, no rany other malignancies nor even acute pancreatitis were observed (in both individual studies and meta- analysis)Cohort study in UK ¹³¹ Exenatide, dulaglutide, irragutide, lixisenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer.Cohort study in Denmark ¹¹³ Exenatide, dulaglutide, irragutide, lixisenatide, and semaglutideProstate cancerAlter 5-year-follow up proteid, GLP1RAs may have a protective effect against prostate cancer, compared to basal insult user: this protective effect against prostate cancer, compared to basal insult user, this protective effect against prostate cancer, compared to basal insult users, basal cancer, compared to basal insult users, basal cancer, compared to basal insult users, basal cancer, so by the antional insurace system.Nested case- control study/inGLP1RAsThyroid cancerAlter 1-3 years of treatment with GLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Meta-analysis of randomized control study/inGLP1RAsSeveral typesCompared to metformin users, GL	Retrospective	exenatide, liragiutide,	Destate	snowed a decreased risk of developing
Netsed case- control studyGLPIRAsColorectal cancerGLPIRAs use did not increase the risk of colorectal cancerMeta analysis ⁵¹ GLPIRAsColorectal cancer and any other malignancyNo increased risk of pancreatic cancer, nor any other malignancies on even and any other malignancyNo increased risk of pancreatic cancer, nor any other malignancies on even and any other malignancyCohort study in UK ¹²¹ Exenatide, dulaglutide, irraglutide, itxisenatide, and semaglutidePancreatic cancerNo increased risk of pancreatic cancer, nor any other malignancies on even and any other malignancyCohort study in Denmark ¹¹¹ Exenatide, dulaglutide, irraglutide, lixisenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving GLPIRAs did not show any increased risk for developing skin cancer.Disproportionali ty analysis based on FAERS ¹²² Exenatide, lixisenatide, and semaglutideProstate cancerNo increase in all tumor cases was cancer suce by GLPIRAs use. However, notable relation was observed between GLPIRAs use. However, notable relation was observed by the national insurance system.Meta-analysis of randomized control study ⁷⁰ GLPIRAsSeveral typesCompared to metformin users, GLPIRAs either increased nor decreased the risk of thyroid cancer or other thyroid disorders.Meta-analysis of randwized rands ⁴¹ LiraglutidePancreatic cancerCompared to metformin users,	cohort study ¹¹⁰	lixisenatide, oral	Prostate cancer	prostate cancer
Retrospective cohort study?GLP1RAsColorectal cancerGLP1RAs use did not increase the risk of colorectal cancerMeta analysis ³¹ lixisenatide, liraglutide, asemaglutidePancreatic cancer and any other malignancyNo increased risk of pancreatic cancer, nor any other malignancies nor even acute pancreatitis were observed (in build, instead, usides, and meta- analysis)Cohort study in UK ²¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideSkin cancerNo increased risk of developing skin cancer.Cohort study in Demmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, dLP1RAs must have a protective effect against prostate cancer, compared to basal insult user, this protective effect against prostate cancer, compared to basal insult user this protective effect against prostate cancer, notable relation was observed between GLP1RAs and those with CVD.Nested case- control study ⁶⁰ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use, however, notable relation was observed between GLP1RAs must having devendent with GLP1RAs must having devendent with GLP1RAs must having devendent with GLP1RAs must having devendent with glapulation covered by the national insurance system.Meta-analysis of randomized control study ⁶⁰ GLP1RAsSeveral typesCompared to metformin users, GLP1RAs uset having devendent with GLP1RAs must having devendent with GLP1RAs must having devendent with glapulation covered by the national insurance system.Meta-analysis of randomized control study ⁶⁰ GLP1RAs <t< td=""><td>2</td><td>semaglutide, and</td><td></td><td></td></t<>	2	semaglutide, and		
Retrospective cohort study? GLP1RAs Colorectal cancer GLP1RAs use du doi increase the risk colorectal cancer Meta analysis ³¹ lixisenatide, liraglutide, abigitutide, and semaglutide Pancreatic cancer and any other malignancy No increased risk of pancreatic cancer, nor any other malignancies nor even acute pancreatilits were observed (in both individual studies and meta- analysis) Cohort study in UK ¹²¹ Exenatide, dulaglutide, ind semaglutide Pancreatic cancer No increased risk for pancreatic cancer, nor any other malignancies nor even acute pancreatilits were observed (in both individual studies and meta- analysis) Cohort study in UK ¹²¹ Exenatide, dulaglutide, inaglutide, lixisenatide, and semaglutide Skin cancer In comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer. Disproportionali ty analysis bared control study ⁶⁰ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutide All types No increase in all tumor cases was caused by GLP1RAs and certain tumors such as caused by GLP1RAs and certain tumors such as caused by GLP1RAs and certain twinto GLP1RAs and intercased risk of thyroid cancer was observed by the nether opatiation corver of side of thyroid cancer was observed in the French population corver of sik of thyroid cancer was observed by the nethor other thyroid disorders. Meta-analysis of randomized databases ¹²⁵ GLP1RAs Several types Compared to metformin users, GLP1RAs neither increased risk of thyroid cancer. <t< td=""><td></td><td>semaglutide</td><td></td><td></td></t<>		semaglutide		
cohort study ¹⁷ of colorectal cancer Meta analysis ⁵¹ lixisenatide, liraglutide, exenatide, dulaglutide, and signatude, liraglutide, iraglutide, lixisenatide, and semaglutide Pancreatic cancer malignancy No increased risk of pancreatic cancer, nor any other malignancies nor even acute pancreatitis were observed (in both individual studies and meta- analysis) Cohort study in UK ¹²¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutide Skin cancer In comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer. Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutide Prostate cancer After 5-year-follow up period, GLP1RAs may have a protective effect was more prominent in older age patients and those with CVD. Disproportionali ty analysis based control study ⁶⁰ GLP1RAs All types No increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed by the mational insurance system. Meta-analysis of randomized dutabases ¹²⁵ GLP1RAs Thyroid cancer After 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system. Analysis of randomized controlled trials ⁶⁵ GLP1RAs Several types Compared to metformin users, GLP1RA wers showed decreased risk of thyroid cancer. Case report ⁴⁴ Liraglutide	Retrospective	GLP1RAs	Colorectal cancer	GLPIRAs use did not increase the risk
Meta analysis*1lixisenatide, liraglutide, exhatide, dulaglutide, altiglutide, and semaglutidePancreatic cancer and any other malignancyNo increased risk of pancreatic cancer. nor any other malignancies nor even acute pancreatic sume observed (in both individual studies and meta- analysis)Cohort study in UK ¹²¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving CIPIRAs did not show any increased risk for developing skin cancer.Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerIn comparison to SU users, patients receiving CIPIRAs did not show any increased risk for developing skin cancer.Disproportionali ty analysis bar on FAERS ¹²⁴ Exenatide, dulaglutide, liraglutideProstate cancerAfter 5-spar-follow up period, GLPIRAs may have a protective effect was more prominent in older age patients and those with CVD.Nested case- control study ⁶⁰ GLPIRAsAll typesNo increase in all tumor such as thyroid cancerMeta-analysis of randomized databases ¹²³ GLPIRAsThyroid cancerGLPIRAs neither increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Analysis of real- world databases ¹²³⁴ GLPIRAsSeveral typesCompared to metformin users, GLPIRAs neither increased risk of thyroid cancer.Analysis of real- world databases ¹²³⁵ GLPIRAsSeveral typesCompared to metformin users, GLPIRAs neither increased risk of thyroid cancer.	cohort study'2			of colorectal cancer
Meta analysis 51exenatide, dulaglutide, and my other malignancynor any other malignancies nor even and up other malignancynor any other malignancies nor even and up other malignancyCohort study in UK 121Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer.Cohort study in Denmark 111Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS 124GLP1RAsAll typesMeta-analysis of randomized control study 60GLP1RAsThyroid cancerClP1RAs an increased risk of thyroid cancerMeta-analysis of randomized world databases 125GLP1RAsThyroid cancerClP1RAs an increased risk of thyroid cancer or other thyroid disorders.Meta-analysis of randomized world databases 125GLP1RAsThyroid cancerCompared to metformin users, GLP1RAs tabee the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases 125GLP1RAsSeveral typesCompared to metformin users, GLP1RAs did not increase the risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Acase-mon case pharmacovigila ce study261Ahiguitide, exenatide, iraglutide and dulaglutide, an		lixisenatide, liraglutide.		No increased risk of pancreatic cancer,
Meta analysis ¹⁴ albiglutide, and semaglutide and any other malignancy acute pancreatitis were observed (in both individual studies and meta- analysis) Cohort study in UK ¹²¹ Exenatide, dulaglutide, ind semaglutide Skin cancer In comparison to SU users, patients receiving GLPIRAs did not show any increased risk for developing skin cancer. Cohort study in UK ¹²¹ Exenatide, dulaglutide, iraglutide, lixisenatide, and semaglutide Prostate cancer In comparison to SU users, patients receiving GLPIRAs did not show any increased risk for developing skin cancer. Disproportionali ty analysis based control study ⁶⁰ GLPIRAs All types After 5-year-follow up period, GLPIRAs may have a protective effect was more prominent in older age patients and those with CVD. Nested case- control study ⁶⁰ GLPIRAs All types No increase in all tumor cases was caused by GLPIRAs use. However, notable relation was observed between GLPIRAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system. Meta-analysis of randomized control study ⁶⁰ GLPIRAs Thyroid cancer GLPIRAs neither increased nor decreased the risk of thyroid cancer was observed in the French population covered by the national insurance system. Analysis of real- world databases ¹²⁵ GLPIRAs Several types GLPIRA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer. Systematic review and meta-analysis ⁶⁰⁷ GLPIRAs Breast cancer It is		exenatide, dulaglutide,	Pancreatic cancer	nor any other malignancies nor even
semagutidemalignancyboth individual studies and meta- analysis)Cohort study in UK 121Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer.Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insult use; this protective effect was more prominent in older age putients and those with CVD.Disproportionali ty analysis based on FAERS 123GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer is showed between GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized outrolled trats ³¹ GLP1RAsFhyroid cancerGLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized outrolled trats ³² GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On ther thyroid cancer or other thyroid cancer or other thyroid cancer.Meta-analysis of randomized outrolled trats ³³ GLP1RAsBreast cancerIL is possible that intragutide use may be related to showed higher risk of thyroid cancer.Meta-ana	Meta analysis ³¹	albiglutide, and	and any other	acute pancreatitis were observed (in
Cohort study in UK 121Exenatide, dulaglutide, linglutide, lixisenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer.Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thryoid cancer, isket cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed to the French population covered by the national insurace system.Meta-analysis of randomized control study ⁶⁰ GLP1RAsSeveral typesCompared to metformin users, GLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world tabases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and ung cancers. On the other hand, it showed higher risk of thyroid cancer.Systematic review and meta-analysis ⁶⁷ GLP1RAsBreast cancerCompared to metformin users, GLP1RAs use and throid cancer.Systematic review and pharmacovigila		semaglutide	malignancy	both individual studies and meta-
Cohort study in UK [21]Exenatide, dulaglutide, liraglutide, lixiscenatide, and semaglutideSkin cancerIn comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer.Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insult use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French opolation covered by the national insurance system.Meta-analysis of readomized controlled trials ⁴³ GLP1RAsThyroid cancerGLP1RAs, an increased risk of thyroid cancer was observed in the French opolation covered by the national insurance system.Meta-analysis of readomized controlled trials ⁴³ GLP1RAsSeveral typesCompared to metformin users, GLP1RAs were showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report ⁴⁴ LiraglutidePancreatic cancerIt is possible that liraglutide use may be relatand wysis ⁶⁷ Case report ⁴⁴ Liraglutide and dhaglutide, and pharmacovigilanAlbiglutide, an		B		analysis)
Cohort study in UK121liraglutide, lixisenatide, and semaglutideSkin cancerreceiving GLP1RAs did not show any increased risk for developing skin cancer.Cohort study in Denmark111Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideSkin cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS124GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs use. However, notable relation was observed in the French opoulation covered by the national neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs neither increased nisk of thyroid cancer was observed in the French opoulation covered by the national insurance system.Meta-analysis of randomized databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RAs neither increased nor decreased the risk of thyroid cancer.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RAs did not increase the risk of prest tumors.Case report44LiraglutidePancreatic cancerIt is possible that liraglutidue use may be related to panceatic cancer.Systematic review and pharmacovigilan ce study ⁶¹⁰ Albiglutide, exenatide, liraglutide and dulaglutideThyroid cancerMeta analysis of randomized pha		Exenatide dulaglutide		In comparison to SU users, patients
UK [21]Integration (momenter) and semaglutideDifferencesCohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect agains prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs and certain tumor such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Meta-analysis of randomized control study ⁶⁰ GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA neither increased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report ⁴⁴ Liraglutide ellel, liraglutide and pharmacovigilan ectudy ⁶¹ Breast cancerThyroid cancerMeta analysis of randomized controlsGLP1RAs meta-analysis ⁶⁷ An association between GLP1RAs use and thyroid tumors,An association between GLP1RAs analysis of randomized clinical trials ⁶¹ Pancreatic cancerAn associa	Cohort study in	liraglutide lixisenatide	Skin cancer	receiving GLP1RAs did not show any
Lind setting-latedcancerCohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized control led trals ⁶¹ Thyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA sures showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Systematic review and meta-analysis ⁶⁷ Exenatide, liraglutide and dulaglutide.Pancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer. Systematic review and meta-analysis ⁶⁷ Meta analysis of randomized coincilaAlbiglutide, exenatide, liraglutideThyroid cancerIt is possible that liraglutide use may be related to pancreatic	UK ¹²¹	and semaglutide	Skill culleer	increased risk for developing skin
Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerAfter 5-year-follow up period, GLPIRAs may have a protective effect against prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased nisk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized databases ¹²⁵ GLP1RAsThyroid cancerGLP1RAs nither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA snither increased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Systematic review and meta-analysis ⁶⁷ LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer. GLP1RAs induction between GLP1RAs use and hurgidutide, liraglutide, and elaud thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized cultical risks ¹⁶⁹ Alliglutide, exenatide, iraglutide, lirisenatide, databases ¹²⁵ Pancreatic cancerIt is possible that liraglutide use may be risk of thyroid cancer. <td></td> <td></td> <td></td> <td>cancer.</td>				cancer.
Cohort study in Denmark ¹¹¹ Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutideProstate cancerGLP1RAs may have a protective effect against prostate cancer, compared to based insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between or calbe relation was observed between or andomized control study ⁶⁰ Nested case- controlled trials ⁶³ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs neither increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials ⁶³ GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased her isk of thyroid cancer or other thyroid disorders.Case report ⁴⁴ bystematic review and erstematic systematic review and erstematic study ⁶² GLP1RAsSeveral typesCompared to metformin users, GLP1RAs did not increase the risk of protate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.A case-non case pharmacovigila ce study ⁶² Exenatide, liraglutide and dulaglutide, and suitidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized controlled trials ⁶³ Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and suitidePancreatic cancerAn associa				After 5-year-follow up period,
Cohort study in Denmark ¹¹¹ Dentaluice, insignation, arganise prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs use and verver, notable relation was observed between GLP1RAs use and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs an increased risk of thyroid cancer was observed in the French oppulation covered by the national insurance system.Meta-analysis of randomized controlled trials ⁶³ GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or or of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report ⁴⁴ LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis of raview and review and ce study ⁶² An association between GLP1RAs use andwiseMeta analysis of review and ce study ⁶³ GLP1RAsBreast cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and review and ce study ⁶³ GLP1RAsBreast cancerAn association between GLP1RAs use and hyroid tumors was observed but the causality cannot be confirmed.Meta analysis of radomized <td></td> <td>Exenatide dulaglutide</td> <td></td> <td>GLP1RAs may have a protective effect</td>		Exenatide dulaglutide		GLP1RAs may have a protective effect
Denmark IIIInfiguration, instruction, and semaglutideProstate calledbasal insult use; this protective effect was more prominent in older age patients and those with CVD.Disproportionali ty analysis based 	Cohort study in	liradutide livisenatide	Prostate cancer	against prostate cancer, compared to
and schinghuidewas more prominent in older age patients and those with CVD.Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized control study ⁶¹ GLP1RAsThyroid cancerGLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials ⁶³ GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Matabases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA suers showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report ⁴⁴ LiraglutidePancreatic cancerIt is possible that liraglutid use may be related to pancreatic cancer.Systematic review and meta-analysis ⁹⁷ Albiglutide, and duaglutide, and ulaglutide, exenatide, liraglutide and duaglutide, and semaglutideThyroid cancerMeta analysis of randomized clinical trials ⁴⁹ Albiglutide, and duaglutide, and semaglutideAn association between GLP1RAs use and thyroid tumors was obser	Denmark ¹¹¹	and semaglutide	Tiostate cancer	basal insulin use; this protective effect
Disproportionali ty analysis based on FAERS ¹²⁴ GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials ⁶³ GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA neither increased risk of thyroid cancer.Case report ⁴⁴ LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis ⁹⁷ GLP1RAsBreast cancerIt is possible that liraglutide use may be related to pancreatic cancer.Meta analysis of randomized convigilan c study ⁶² Albiglutide, exenatide, liraglutide and dulaglutide.Thyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of review and meta-analysis ⁹⁷ Albiglutide, exenatide, liraglutide and dulaglutide, and semglutide, lixisenatide, iraglutide, lixisenatide, iraglutide, lixisenatide, iraglutide, lixisenatide, iraglutide, lixisenatide, iraglutide, lixisenatide, iraglutide, lixisenatide, iragl		and semagiunde		was more prominent in older age
Disproportionali ty analysis based on FAERS124GLP1RAsAll typesNo increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study60GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized control study60GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Meta-analysis of randomized controlled trials63GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97Exenatide, liraglutide and dulaglutide, exenatide, liraglutide, lixisenatide, inguitide, lixisenatide, inguitide, lixisenatide, inguitide, lixisenatide, inguitide, lixisenatide, liraglutide, and semaglutideAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, lirag				patients and those with CVD.
Disproportionali ty analysis based on FAERS124GLP1RAsAll typescaused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study60GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials63GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan c study62Albiglutide, exenatide, liraglutide and dulaglutide, ilixisenatide, iraglutide, and semaglutidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, and semaglutide, ilixisenatide, inglutide, ilixisenatide, iraglutide, and semaglutidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed but				No increase in all tumor cases was
Dispersion based on FAERS124GLP1RAsGLP1RAsnotable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study60GLP1RAsAll typesAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials63GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis?7GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutide, and senatide, lixisenatide, liraglutide, and senatideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, inxisenatide, liraglutide, and semaglutidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Ater analysis of randomized	Disproportionali			caused by GLP1RAs use. However,
In typesGLP1RAsAn typesGLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study ⁶⁰ GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials ⁶³ GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Mata-analysis of randomized controlled trials ⁶³ GLP1RAsSeveral typesGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases ¹²⁵ GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report ⁴⁴ LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis ⁵⁷⁷ GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.Meta analysis of randomized clinical trials ⁴⁹ Albiglutide, exenatide, liraglutide, lixisenatide, liraglutide, lixisenatide, liraglutide, and semaglutidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials ⁴⁹ Albiglutide, exenatide, liraglutide, lixisenatide, liraglutide, lixisenatide, 	ty analysis based	GI P1P As	All types	notable relation was observed between
On FALKSthyroid cancer, islet cell neoplasm and neuroendocrine tumors.Nested case- control study60GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials63GLP1RAsThyroid cancerGLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Mata-analysis of randomized controlled trials63GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, ulaglutide, and semaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed while easality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, ulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for p	on $EAEPS^{124}$	OLI IKAS	All types	GLP1RAs and certain tumors such as
Nested case- control study%GLP1RAsThyroid cancerAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trialsGLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsFhyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Case report44GLP1RAsSeveral typesCompared to metformin users, Of the other hand, it showed higher risk of thyroid cancer.Systematic review and meta-analysis*GLP1RAsPancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis*GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.Meta analysis of randomized pharmacovigilan c e studyc27An association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutidePancreatic cancerAn association between GLP1RAs use and thyroid tumors was observed will eausality cannot be confirmed. </td <td>UIITALINS</td> <td></td> <td></td> <td>thyroid cancer, islet cell neoplasm and</td>	UIITALINS			thyroid cancer, islet cell neoplasm and
Nested case- control study60GLP1RAsAfter 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials63GLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsFhyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Case report44GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Systematic review and meta-analysis977GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan es estudy62Exenatide, liraglutide and dulaglutideThyroid cancerGLP1RAs usen sobserved but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.				neuroendocrine tumors.
Nested case- control study60GLP1RAsThyroid cancerGLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trials63GLP1RAsGLP1RAsGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsFuyroid cancerGLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatiic cancer was not enough to draw a conclusion.				After 1-3 years of treatment with
Nesseu Case- control studyGLP1RAsThyroid cancercancer was observed in the French population covered by the national insurance system.Meta-analysis of randomized controlled trialsGLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study<62	Nested case			GLP1RAs, an increased risk of thyroid
control studypopulation covered by the national insurance system.Meta-analysis of randomized controlled trialsGLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsFhyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Case report44GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitic was observed while available data on pancreatic cancer was not enough to draw a conclusion.	control study ⁶⁰	GLP1RAs	Thyroid cancer	cancer was observed in the French
Meta-analysis of randomized controlled trialsGLP1RAsGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsFuyroid cancerGLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic neta-analysis of review and neta-analysis of rest-non case pharmacovigilan ce studyGLP1RAsBreast cancerA case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutide, lixisenatide, liraglutide, lixisenatide, ulaglutide, lixisenatide, ulaglutide, lixisenatide, ulaglutide, and semaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, ulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatic cancer was not enough to draw a conclusion.	control study			population covered by the national
Meta-analysis of randomized controlled trialsGLP1RAsThyroid cancerGLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatiis was observed while available data on pancreatic cancer was not enough to draw a conclusion.				insurance system.
randomized controlled trialsGLP1RAsThyroid cancerdecreased the risk of thyroid cancer or other thyroid disorders.Analysis of real- world databases125GLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case reportLiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan c estudy62Exenatide, liraglutide and dulaglutide, lixisenatide, liraglutide, lixisenatide, ulaglutide, lixis	Meta-analysis of			GLP1RAs neither increased nor
controlled trialsCher TKASThyroid cancerother thyroid disorders.Analysis of real- world databasesGLP1RAsSeveral typesCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case reportLiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysisGLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce studyExenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trialsAlbiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatic cancer was not enough to draw a conclusion.	randomized		Thuroid concor	decreased the risk of thyroid cancer or
trialsImage: constraint of the second se	controlled	OLFIKAS	Thyrolu cancer	other thyroid disorders.
Analysis of real- world databases 125GLP1RAsCompared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report 44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis 97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigian ce study 62Exenatide, liraglutide and dulaglutide, exenatide, liraglutide, lixisenatide, dulaglutide, lixisenatide, dulaglutide, and semaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials 49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutideAlbiglutide, and semaglutideAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	trials ⁶³			
Analysis of real- world databases125GLP1RAsSeveral typesGLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutide, exenatide, liraglutide, lixisenatide, dulaglutide, lixisenatide, dulaglutide, lixisenatide, dulaglutide, lixisenatide, dulaglutide, and semaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.				Compared to metformin users,
world databases125GLP1RAsSeveral typesof prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutide, exenatide, liraglutide, lixisenatide, dulaglutide, lixisenatide, dulaglutide, and semaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	Analysis of real-			GLP1RA users showed decreased risk
databases125On the other hand, it showed higher risk of thyroid cancer.Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	world	GLP1RAs	Several types	of prostate, colon, and lung cancers.
Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutide, exenatide, liraglutide, lixisenatide, dulaglutide, lixisenatide, dulaglutide, and semaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	databases ¹²⁵			On the other hand, it showed higher
Case report44LiraglutidePancreatic cancerIt is possible that liraglutide use may be related to pancreatic cancer.Systematic review and meta-analysis97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.				risk of thyroid cancer.
Case reportLiragituidePancreatic cancerrelated to pancreatic cancer.Systematic review and meta-analysis 97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study 62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials 49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	C a a a man a mt ⁴⁴	I ins alastida	Demonstia	It is possible that liraglutide use may be
Systematic review and meta-analysis 97GLP1RAsBreast cancerGLP1RAs did not increase the risk of breast tumors.A case-non case pharmacovigilan ce study 62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials 49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	Case report	Liragiunde	Pancreatic cancer	related to pancreatic cancer.
review and meta-analysis97GLP1RAsBreast cancerbreast tumors.A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	Systematic			GLP1RAs did not increase the risk of
meta-analysis97Image: Market and the second case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutideAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	review and	GLP1RAs	Breast cancer	breast tumors.
A case-non case pharmacovigilan ce study62Exenatide, liraglutide and dulaglutideThyroid cancerAn association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trials49Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	meta-analysis97			
pharmacovigilan ce studyExenatide, liragiutide and dulagiutideThyroid cancerand thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trialsAlbiglutide, exenatide, liragiutide, lixisenatide, dulagiutide, and semagiutideThyroid cancerand thyroid tumors was observed but the causality cannot be confirmed.Meta analysis of randomized clinical trialsAlbiglutide, exenatide, liragiutide, lixisenatide, dulagiutide, and semagiutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	A case-non case			An association between GLP1RAs use
Ce studydulaglutidethe causality cannot be confirmed.Meta analysis of randomized clinical trialsAlbiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutidePancreatic cancerAfter analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic cancer was not enough to draw a conclusion.	pharmacovigilan	Exenatide, liraglutide and	Thyroid cancer	and thyroid tumors was observed but
Meta analysis of randomized clinical trials ⁴⁹ Albiglutide, exenatide, dulaglutide, lixisenatide, semaglutide and semaglutide	ce study ⁶²	dulaglutide	2	the causality cannot be confirmed.
Meta analysis of randomized clinical trials ⁴⁹ Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutide		A 11 * 1 . * 1		After analyzing 43 clinical trials. no
randomized clinical trials ⁴⁹ liraglutide, lixisenatide, dulaglutide, and semaglutide Pancreatic cancer while available data on pancreatic cancer was not enough to draw a conclusion.	Meta analysis of	Albiglutide, exenatide,		evidence for pancreatitis was observed
clinical trials ⁴⁹ dulaglutide, and semaglutide cancer was not enough to draw a conclusion.	randomized	liraglutide, lixisenatide,	Pancreatic cancer	while available data on pancreatic
semaglutide conclusion.	clinical trials49	dulaglutide, and		cancer was not enough to draw a
		semaglutide		conclusion.

c-Glucagon-like peptide-1 receptor agonists in clinical studies.

Meta analysis ⁵²	GLP1RAs	Pancreatic cancer	GLP1RAs use did not increase the risk of developing pancreatitis or pancreatic cancer.
Meta-analysis ¹²⁶	GLP1RAs (Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutide)	All types	Among GLP1RAs users, no increased risk of any malignancy was reported. Further, albiglutide showed a lower risk of cancer, however more studies are needed to confirm this observation. In addition, the risk of neither thyroid nor pancreatic cancer was increased among GLP1RAs users.
Meta-analysis ¹²⁷	Liraglutide, exenatide, semaglutide, and albiglutide	All types	No increased risk of malignancy was reported among GLP1RAs users.
Population based cohort study ⁸⁸	GLP1RAs	Cholangiocarcinoma	The use of GLP1RAs may be associated with an increased hazard of bile duct cancer compared to SU and thiazolidinediones
Meta-analysis ⁴⁸	Albiglutide, exenatide, liraglutide, lixisenatide, dulaglutide and semaglutide	Pancreatic cancer	GLP1RAs did not increase the risk of pancreatic cancer nor pancreatitis but increased the risk of cholelithiasis
UK-Population based cohort study ⁹⁶	Exenatide, liraglutide and lixisenatide	Breast cancer	GLP1RAs users did not exhibit an increased risk of breast cancer.

d-Dipeptidyl peptidase 4 inhibitors in clinical studies.

Study	Agent used	Cancer type	Outcomes
3-year-prospective study in T2DM patients ⁶⁴	Alogliptin	Several types including lung cancer, pancreatic cancer, gastric cancer, prostate cancer, thyroid cancer, and others.	The use of alogliptin was safe and no significant increase in incidence of any cancer type was observed in ALO- treated group
Retrospective study ⁷³	Sitagliptin, linagliptin, vildagliptin, saxagliptin	Colorectal cancer	DPP4Is were associated with better 5- year-prognosis compared to metformin.
Retrospective cohort study ¹¹⁰	Alogliptin, linagliptin, saxagliptin, sitagliptin, vildagliptin	Prostate cancer	Compared to sulfonylureas, DPP4Is were associated with lower risk of prostate cancer
Epidemiology study ⁷⁴	Alogliptin, linagliptin, saxagliptin, sitagliptin, vildagliptin	Colorectal cancer and lung cancer	DPP4Is showed improved survival
Cohort study ⁴⁵	DPP4Is	Pancreatic cancer	No increased risk of developing pancreatic cancer with DPP4Is (18months study)
Population-based cohort study ¹²⁸	DPP4Is	Metastatic lesions after various primary malignancies	DPP4Is use was not associated with increased risk of metastasis except for primary thyroid cancer

Retrospective study ⁷²	DPP4Is	Colorectal cancer	DPP4Is use did not increase the risk of colorectal cancer
Meta-analysis of clinical trials ⁵⁰	DPP4Is	Pancreatic cancer	No association was found between DPP4Is and pancreatic cancer. On the other hand, a smaller increase in acute pancreatitis was observed, however this finding is not definitive as the sample size was small.
Retrospective study ⁷⁵	Sitagliptin, saxagliptin, linagliptin	Colorectal, lung, head, and neck cancer	Patients treated with DPP4Is showed improved progression-free survival
Population-based cohort study of diabetic patients ⁴⁶	DPP4Is	Pancreatic cancer	with a relatively long follow-up (around 8 years), DPP-4 inhibitor use was not associated with an increased risk of pancreatic cancer
Nested case-control study of diabetic patients ⁷⁶	DPP4Is	Colorectal cancer and liver cancer	There was no association between DPP4Is use and the risk of liver cancer. However, regarding the risk of colorectal cancer, the results were controversial depending on the dose; the usage of low dose of DPP4Is were associated with reduced risk while medium and high dose showed increased risk of colorectal cancer in J- shaped dose response curve.
Retrospective study ¹¹²	DPP4Is	Prostate cancer	Treatment with DPP4Is failed to improve the progression-free survival in diabetic patients with advanced stage prostate cancer compared to metformin group.
Retrospective study ¹¹⁵	DPP4Is	Non-small cell lung cancer	DPP4Is together with metformin improved the clinical outcomes in patients receiving immune checkpoint inhibitors without increasing the risk of adverse effects.
Meta analysis based on CVOTs ⁵¹	saxagliptin, sitagliptin, alogliptin, and linagliptin	Pancreatic cancer and any other malignancy	The use of DPP4Is were not associated with any change in the risk of pancreatic cancer or any other malignant tumor while showed a nonsignificant trend in individual studies towards increased risk of acute pancreatitis that showed statistical significance in meta-analysis
Retrospective study ¹²⁹	DPP4Is	Several types	No increased risk of malignancies was observed in DPP4I users compared to metformin users.
Retrospective study on T2DM patients with HBV infection in Taiwan ⁸⁶	Alogliptin, sitagliptin, saxagliptin, vildagliptin, and linagliptin	Hepatocellular carcinoma	DPP4I users showed reduced risk of developing HCC in patients with HBV infection compared to non-users
Case study ¹²²	Saxagliptin	Carcinoid tumor	A correlation was found between saxagliptin usage and serotonin level which may indicate a possible relation between DPP4Is use and the activity of carcinoid tumors.

Retrospective cohort study on T2DM patients with chronic hepatitis C in Taiwan ⁸⁷	DPP4Is	Hepatocellular carcinoma	Compared to non-users, DPP4I users showed a reduced risk of developing HCC.
Population based cohort study ⁸⁸	DPP4Is	Cholangiocarcinoma	Among users of DPP4Is, the incidence of cholangiocarcinoma was higher compared to sulfonylureas and thiazolidinediones.
Meta-analysis ⁴⁷	DPP4Is (vildagliptin, sitagliptin, alogliptin, saxagliptin, linagliptin and dutogliptin)	Any malignancy including pancreatic cancer	No increased risk of cancer or pancreatitis was observed in DPP4Is

Conclusion

Different studies, both preclinical and clinical, have investigated the relation between cancer and incretins. While interpreting these studies, some points must be considered; differences between species, differences in expression of GLP-1R and DPP4 enzyme in tissues and the pleiotropic effects of GLP-1RAs and DPP4Is, especially as it is known that DPP4 enzyme works on numerous substrates which may influence cell survival, proliferation and immune response. Whether there is a role for genetic factors and ethnicity differences in the risk of malignancy, especially thyroid and pancreatic cancer, among incretin-based drug users is worth future research. Different meta-analyses and retrospective studies stated the safety of incretin-based therapy in terms of cancer risk^{47,} ^{126, 127, 129}. Other studies have even investigated the risk of metastasis in patients receiving incretin-based therapy, and found that except for primary thyroid cancer, the risk of metastasis was not increased¹²⁸. To date, the reported benefits of incretin-based therapy outweigh the concerns about increased risk of pancreatitis and thyroid cancer, especially in light of low incidence, good prognosis, and low mortality of thyroid cancer. Future research is still needed to help us fully understand the complex connection between incretins and cancer considering studies that have supposed a protective effect of incretin-based therapy against adverse effects induced by different chemotherapy.

REFERENCES

- J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram and F. Bray, "Global cancer Observatory: cancer today", Lyon, France: international agency for research on cancer", <u>https://gco.iarc.fr/today</u>. (Accessed August,2023). (2020).
- H.F. Wolde, M.D. Molla, H. Aragie, D.G. Adugna, E.T. Teferi, E.B. Melese, Y.A. Assefa, H. Kifle, Y.B. Worku, D.G. Belay and A.A. Kibret, "High burden of diabetes and prediabetes among cancer patients at University of Gondar comprehensive specialized hospital, Northwest Ethiopia", *Sci Rep*, 13(1), 9431 (2023).
- 3. IDF, "International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium 2021", URL https://www.diabetesatlas.org (2021).
- A. Nicolucci, "Epidemiological aspects of neoplasms in diabetes", *Acta Diabetol*, 47(2) 87-95 (2010).
- L.L. Baggio, D.J. Drucker, "Biology of incretins: GLP-1 and GIP", *Gastroenterology* 132(6) 2131-2157 (2007).
- C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package: Byetta (Exenatide) NDA #021773", (2005).

https://www.accessdata.fda.gov/drugsatfda _docs/nda/2005/021773_ByettaTOC.cfm. (Accessed 2023/08/06/13:15:42 Access 2005).

- 7. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package: Januvia (Sitagliptin Phosphate) NDA #021995", (2006). <u>https://www.accessdata.fda.gov/drugsatfda</u> <u>docs/nda/2006/021995s000TOC.cfm</u>. (Accessed 2023/08/06/13:32:46 Access 2006).
- D.J. Drucker, S.I. Sherman, F.S. Gorelick, R.M. Bergenstal, R.S. Sherwin and J.B. Buse, "Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits", *Diabetes Care*, 33(2) 428-433 (2010).
- X. Zhao, M. Wang, Z. Wen, Z. Lu, L. Cui, C. Fu, H. Xue, Y. Liu and Y. Zhang, "GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects", *Front Endocrinol* (*Lausanne*), 12, 721135 (2021).
- M. Korner, M. Stockli, B. Waser and J.C. Reubi, "GLP-1 receptor expression in human tumors and human normal tissues: potential for *In vivo* targeting", *J Nucl Med*, 48(5) 736-743 (2007).
- S.M. Kang and J.H. Park, "Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control", *Clin Med Insights Endocrinol Diabetes*, 14, 11795514211051698 (2021).
- C.F. de Andrade, R. Bigni, M.S. Pombode-Oliveira, G. Alves and D.A. Pereira, "CD26/DPPIV cell membrane expression and DPPIV activity in plasma of patients with acute leukemia", *J Enzyme Inhib Med Chem*, 24(3) 708-714 (2009).
- T. Stulc and A. Sedo, "Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects?", *Diabetes Res Clin Pract*, 88(2) 125-131 (2010).
- 14. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package", BYDUREON (exenatide) NDA # 022200", <u>https://www.accessdata.fda.gov/drugsatfda</u> <u>docs/nda/2012/022200Orig1s000TOC.cf</u> <u>m</u>. (Accessed 2024/07/25/06:57:39 Access 2012). (2012).
- 15. T. Bertsch and K. McKeirnan, "Itca 650", *Clin Diabetes*, 36(3) 265-267 (2018).

- E.W. Iepsen, S.S. Torekov and J.J. Holst, "Liraglutide for Type 2 diabetes and obesity: a 2015 update", *Expert Rev Cardiovasc Ther*, 13(7) 753-67 (2015).
- 17. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package", Tanzeum (Albiglutide) NDA # 125431", (2014).
 <u>https://www.accessdata.fda.gov/drugsatfda</u> <u>docs/nda/2014/125431Orig1s000TOC.cf</u> <u>m/125431Orig1s000ChemRedt.pdf</u>. (Accessed 2024/07/25/07:11:42 Access 2014).
- C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package: Trulicity (dulaglutide) NDA # 125469", (2014). <u>https://www.accessdata.fda.gov/drugsatfda</u> daga/nda/2014/125460Orig1s000TOC af

<u>docs/nda/2014/125469Orig1s000TOC.cf</u> <u>m</u>. (Accessed 2024/07/25/07:35:08 Access 2014).

- 19. E.M.A. European Medicines Agency, "Trulicity ", (2014). <u>https://www.ema.europa.eu/en/medicines/</u> <u>human/EPAR/trulicity</u>. (Accessed 2024/07/25/07:42:20 Access 2014).
- A.M. Chao, J.S. Tronieri, A. Amaro and T.A. Wadden, "Semaglutide for the treatment of obesity", *Trends Cardiovasc Med*, 33(3) 159-166 (2023).
- 21. Y. Zhang, Y. Ding, X. Zhong, Q. Guo, H. Wang, J. Gao, T. Bai, L. Ren, Y. Guo, X. Jiao and Y. Liu, "Geniposide acutely stimulates insulin secretion in pancreatic beta-cells by regulating GLP-1 receptor/cAMP signaling and ion channels", *Mol Cell Endocrinol*, 430, 89-96 (2016).
- R.E. Pratley, J. Kang, M.E. Trautmann, M. Hompesch, O. Han, J. Stewart, C.H. Sorli, S. Jacob and K.H. Yoon, "Body weight management and safety with efpeglenatide in adults without diabetes: A phase II randomized study", *Diabetes Obes Metab*, 21(11) 2429-2439 (2019).
- 23. C.f.D.E.a.R. U.S. Food and Drug Administration, "FDA approves Adlyxin to treat type 2 diabetes", (2016). <u>https://www.fda.gov/news-events/press-</u> <u>announcements/fda-approves-adlyxin-</u> <u>treat-type-2-diabetes</u>. Access 2016).

- 24. E.M.A. European Medicines Agency, "Lyxumia ", (2013). <u>https://www.ema.europa.eu/en/medicines/</u> <u>human/EPAR/lyxumia</u>. (Accessed 2024/07/25/08:18:56 Access 2013).
- 25. C.f.D.E.a.R. U.S. Food and Drug Administration, "FDA Approves Novel, Dual-Targeted Treatment for Type 2 Diabetes", (2022). <u>https://www.fda.gov/news-events/press-</u> <u>announcements/fda-approves-novel-dual-</u> <u>targeted-treatment-type-2-diabetes</u>. Access 2022).
- 26. E.M.A. European Medicines Agency, "Mounjaro", (2022). <u>https://www.ema.europa.eu/en/medicines/</u> <u>human/EPAR/mounjaro</u>. (Accessed 2023/09/07/08:29:56 Access 2022).
- S.R. Ahmad, J. Swann, "Exenatide and rare adverse events", *N Engl J Med* 358(18) 1970-1971, discussion 1971-1972 (2008).
- A.S. Franks, P.H. Lee and C.M. George, "Pancreatitis: a potential complication of liraglutide?", *Ann Pharmacother*, 46(11), 1547-1553 (2012).
- 29. A.B. Lowenfels, P. Maisonneuve, G. Cavallini, R.W. Ammann, P.G. Lankisch, J.R. Andersen, E.P. Dimagno, A. Andren-Sandberg and L. Domellof, "Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group", N *Engl J Med*, 328(20), 1433-1437 (1993).
- U.K. Bhanot and P. Moller, "Mechanisms of parenchymal injury and signaling pathways in ectatic ducts of chronic pancreatitis: implications for pancreatic carcinogenesis", *Lab Invest*, 89(5), 489-497 (2009).
- H. Storgaard, F. Cold, L.L. Gluud, T. Vilsboll and F.K. Knop, "Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes", *Diabetes Obes Metab*, 19(6), 906-908 (2017).
- J.H. Kang, M.J. Kim, S.H. Ko, I.K. Jeong, K.H. Koh, D.J. Rhie, S.H. Yoon, S.J. Hahn, M.S. Kim and Y.H. Jo, "Upregulation of rat Ccnd1 gene by exendin-4 in pancreatic beta cell line INS-1: interaction of early growth response-1

with cis-regulatory element", *Diabetologia*, 49(5), 969-979 (2006).

- 33. Z.F. Chen, Y.B. Li, J.Y. Han, J.J. Yin, Y. Wang, L.B. Zhu and G.Y. Xie, "Liraglutide prevents high glucose level induced insulinoma cells apoptosis by targeting autophagy", *Chin Med J (Engl)*, 126(5), 937-941 (2013).
- Y.H. Feng, G. Velazquez-Torres, C. Gully, J. Chen, M.H. Lee and S.C. Yeung, "The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth", *J Cell Mol Med*, 15(4), 825-836 (2011).
- 35. H. Zhao, L. Wang, R. Wei, D. Xiu, M. Tao, J. Ke, Y. Liu, J. Yang and T. Hong, "Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway", *Diabetes Obes Metab*, 16(9), 850-860 (2014).
- 36. H. Zhao, R. Wei, L. Wang, Q. Tian, M. Tao, J. Ke, Y. Liu, W. Hou, L. Zhang, J. Yang and T. Hong, "Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner", *Am J Physiol Endocrinol Metab*, 306(12), E1431-E1441 (2014).
- H.J. Zhao, X. Jiang, L.J. Hu, L. Yang, L.D. Deng, Y.P. Wang and Z.P. Ren, "Activation of GLP-1 receptor enhances the chemosensitivity of pancreatic cancer cells", *J Mol Endocrinol*, 64(2), 103-113 (2020).
- 38. N. Vrang, J. Jelsing, L. Simonsen, A.E. Jensen, I. Thorup, H. Soeborg and L.B. Knudsen, "The effects of 13 wk of liraglutide treatment on endocrine and exocrine pancreas in male and female ZDF rats: a quantitative and qualitative analysis revealing no evidence of drug-induced pancreatitis", *Am J Physiol Endocrinol Metab*, 303(2), E253-E264 (2012).
- 39. N.C. Nyborg, A.M. Molck, L.W. Madsen and L.B. Knudsen, "The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species", *Diabetes*, 61(5), 1243-1249 (2012).
- 40. A.V. Matveyenko, S. Dry, H.I. Cox, A. Moshtaghian, T. Gurlo, R. Galasso, A.E.

Butler and P.C. Butler, "Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin", *Diabetes*, 58(7), 1604-1615 (2009).

- 41. K. Aston-Mourney, S.L. Subramanian, S. Zraika, T. Samarasekera, D.T. Meier, L.C. Goldstein and R.L. Hull, "One year of sitagliptin treatment protects against islet amyloid-associated beta-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice", *Am J Physiol Endocrinol Metab* 305(4), E475-E484 (2013).
- 42. T. Forest, D. Holder, A. Smith, C. Cunningham, X. Yao, M. Dey, C. Frederick and S. Prahalada, "Characterization of the exocrine pancreas in the male Zucker diabetic fatty rat model of type 2 diabetes mellitus following 3 months of treatment with sitagliptin", *Endocrinology*, 155(3), 783-792 (2014).
- 43. C.F. Gotfredsen, A.M. Molck, I. Thorup, N.C. Nyborg, Z. Salanti, L.B. Knudsen and M.O. Larsen, "The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates", *Diabetes*, 63(7), 2486-2497 (2014).
- 44. S. Wu, J. Wang, L. Jing and L. Chen, "A Diabetic Patient Complicated With Pancreatic Cancer After Using Liraglutide: A Case Report", Front Endocrinol (Lausanne) 11 608966 (2020).
- 45. M. Gokhale, J.B. Buse, C.L. Gray, V. Pate, M.A. Marquis, T. Sturmer, "Dipeptidylpeptidase-4 inhibitors and pancreatic cancer: a cohort study", *Diabetes Obes Metab*, 16(12), 1247-1256 (2014).
- 46. M.K. Kim, K. Han, H.S. Kwon and S.J. Yoo, "Risk of Pancreatic Cancer and Use of Dipeptidyl Peptidase 4 Inhibitors in Patients with Type 2 Diabetes: A Propensity Score-Matching Analysis", *Endocrinol Metab (Seoul)*, 38(4), 426-435 (2023).
- 47. M. Monami, I. Dicembrini, D. Martelli and E. Mannucci, "Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials", *Curr Med Res Opin*, 27(Suppl 3), 57-64 (2011).

- M. Monami, B. Nreu, A. Scatena, B. Cresci, F. Andreozzi, G. Sesti, E. Mannucci, "Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials", *Diabetes Obes Metab*, 19(9), 1233-1241 (2017).
- 49. B. Nreu, I. Dicembrini, F. Tinti, E. Mannucci and M. Monami, "Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: an updated meta-analysis of randomized controlled trials", *Minerva Endocrinol (Torino)*, 48(2), 206-213 (2023).
- 50. L.C. Pinto, D.V. Rados, S.S. Barkan, C.B. Leitao and J.L. Gross, "Dipeptidyl peptidase-4 inhibitors, pancreatic cancer and acute pancreatitis: A meta-analysis with trial sequential analysis", *Sci Rep*, 8(1), 782 (2018).
- 51. M. Abd El Aziz, O. Cahyadi, J.J. Meier, W.E. Schmidt, M.A. Nauck, "Incretinbased glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials", *Diabetes Obes Metab*, 22(4), 699-704 (2020).
- 52. C. Cao, S. Yang and Z. Zhou, "GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials", *Endocrine*, 68(3), 518-525 (2020).
- 53. L. Bjerre Knudsen, L.W. Madsen, S. Andersen, K. Almholt, A.S. de Boer, D.J. Drucker, C. Gotfredsen, F.L. Egerod, A.C. Hegelund, H. Jacobsen, S.D. Jacobsen, A.C. Moses, A.M. Molck, H.S. Nielsen, J. Nowak, H. Solberg, T.D. Thi, M. Zdravkovic and U. Moerch, "Glucagonlike Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation", Endocrinology, 151(4), 1473-1486 (2010).
- 54. F. Boess, C. Bertinetti-Lapatki, S. Zoffmann, C. George, T. Pfister, A. Roth, S.M. Lee, W.E. Thasler, T. Singer and L. Suter, "Effect of GLP1R agonists taspoglutide and liraglutide on primary

thyroid C-cells from rodent and man", *J Mol Endocrinol*, 50(3) 325-336 (2013).

- 55. B. Gier, P.C. Butler, C.K. Lai, D. Kirakossian, M.M. DeNicola and M.W. Yeh, "Glucagon like peptide-1 receptor expression in the human thyroid gland", *J Clin Endocrinol Metab*, 97(1), 121-131 (2012).
- 56. C. Pyke, R.S. Heller, R.K. Kirk, C. Orskov, S. Reedtz-Runge, P. Kaastrup, A. Hvelplund, L. Bardram, D. Calatayud and L.B. Knudsen. "GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody", Endocrinology, 155(4), 1280-1290 (2014).
- 57. X. Hu, S. Chen, C. Xie, Z. Li, Z. Wu, Z. You, "DPP4 gene silencing inhibits proliferation and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through suppression of the MAPK pathway", *J Endocrinol Invest*, 44(8), 1609-1623 (2021).
- 58. J.J. Lee, T.Y. Wang, C.L. Liu, M.N. Chien, M.J. Chen, Y.C. Hsu, C.H. Leung and S.P. Cheng, "Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma", *J Clin Endocrinol Metab*, 102(8), 2930-2940 (2017).
- 59. L. Hegedüs, A.C. Moses, M. Zdravkovic, T. Le Thi and G.H. Daniels, "GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide", J Clin Endocrinol Metab, 96(3), 853-860 (2011).
- J. Bezin, A. Gouverneur, M. Penichon, C. Mathieu, R. Garrel, D. Hillaire-Buys, A. Pariente and J.L. Faillie, "GLP-1 Receptor Agonists and the Risk of Thyroid Cancer", *Diabetes Care*, 46(2),384-390 (2023).
- 61. C.A. Thompson and T. Sturmer, "Putting GLP-1 RAs and Thyroid Cancer in Context: Additional Evidence and Remaining Doubts", *Diabetes Care*, 46(2), 249-251 (2023).
- 62. G. Mali, V. Ahuja and K. Dubey, "Glucagon-like peptide-1 analogues and

thyroid cancer: An analysis of cases reported in the European pharmacovigilance database", *J Clin Pharm Ther*, 46(1), 99-105 (2021).

- W. Hu, R. Song, R. Cheng, C. Liu, R. Guo, W. Tang, J. Zhang, Q. Zhao, X. Li and J. Liu, "Use of GLP-1 Receptor Agonists and Occurrence of Thyroid Disorders: a Meta-Analysis of Randomized Controlled Trials", *Front Endocrinol (Lausanne)*, 13, 927859 (2022).
- 64. K. Ueki, Y. Tanizawa, J. Nakamura, Y. Yamada, N. Inagaki, H. Watada, I. Shimomura, R. Nishimura, H. Miyoshi, A. Abiko, H. Katagiri, M. Hayashi, A. Shimada, K. Naruse, S. Fujimoto, M. Fujiwara, K. Shikata, Y. Okada, E. Araki, T. Yamazaki, T. Kadowaki and J.B.R. Group, "Long-term safety and efficacy of alogliptin, a DPP-4 inhibitor, in patients with type 2 diabetes: a 3-year prospective, controlled, observational study (J-BRAND Registry)", *BMJ Open Diabetes Res Care*, 9(1), e001787 (2021).
- 65. T. Jin, "Why diabetes patients are more prone to the development of colon cancer?", *Med Hypotheses*, 71(2), 241-244 (2008).
- 66. G. Tong, T. Peng, Y. Chen, L. Sha, H. Dai, Y. Xiang, Z. Zou, H. He and S. Wang, "Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway", *Front Pharmacol*, 13, 901559 (2022).
- X. Zheng, J. Liu, X. Li, R. Tian, K. Shang, X. Dong and B. Cao, "Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells", *Cancer Lett*, 497, 190-201 (2021).
- J.H. Jang, L. Baerts, Y. Waumans, I. De Meester, Y. Yamada, P. Limani, I. Gil-Bazo, W. Weder, W. Jungraithmayr, "Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice", *Clin Exp Metastasis*, 32(7), 677-687 (2015).
- 69. C.A. Amritha, P. Kumaravelu and D.D. Chellathai, "Evaluation of Anti Cancer Effects of DPP-4 Inhibitors in Colon

Cancer- An Invitro Study", *J Clin Diagn Res*, 9(12), FC14-FC16 (2015).

- 70. N. Yorifuji, T. Inoue, M. Iguchi, K. Fujiwara, K. Kakimoto, S. Nouda, T. Okada, K. Kawakami, Y. Abe, T. Takeuchi and K. Higuchi, "The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice", *Oncol Rep*, 35(2), 676-682 (2016).
- R. Varela-Calvino, M. Rodriguez-Quiroga, P. Dias Carvalho, F. Martins, A. Serra-Roma, L. Vazquez-Iglesias, M. Paez de la Cadena, S. Velho and O.J. Cordero, "The mechanism of sitagliptin inhibition of colorectal cancer cell lines' metastatic functionalities", *IUBMB Life*, 73(5), 761-773 (2021).
- 72. D. Abrahami, H. Yin, O.H.Y. Yu, M.N. Pollak and L. Azoulay, "Incretin-based Drugs and the Incidence of Colorectal Cancer in Patients with Type 2 Diabetes", *Epidemiology*, 29(2), 246-253 (2018).
- L. Ng, D.C. Foo, C.K. Wong, A.T. Man, O.S. Lo and W.L. Law, "Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study", *Cancers (Basel)*, 13(14), 3588 (2021).
- 74. R. Bishnoi, Y.R. Hong, C. Shah, A. Ali, W.P.t. Skelton, J. Huo, N.H. Dang and L.H. Dang, "Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study", *Cancer Med*, 8(8), 3918-3927 (2019).
- 75. A. Ali, A. Fuentes, W.I. Skelton, Y. Wang, S. McGorray, C. Shah, R. Bishnoi, L.H. Dang and N.H. Dang, "A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers", *Mol Clin Oncol*, 10(1), 118-124 (2019).
- 76. C.L. Chou, S.H. Juan, C.H. Li, H.H. Chen, C.C. Kao, L.Y. Chen, L.N. Chien and T.C. Fang, "Association Between DPP-4 Inhibitors and Events of Colorectal and Liver Cancers in Patients With Diabetes Receiving Second-Line Agents: A Nested

Case-Control Study", *Front Oncol*, 12, 840142 (2022).

- 77. X. Lu, C. Xu, J. Dong, S. Zuo, H. Zhang, C. Jiang, J. Wu and J. Wei, "Liraglutide activates nature killer cell-mediated antitumor responses by inhibiting IL-6/STAT3 signaling in hepatocellular carcinoma", *Transl Oncol*, 14(1), 100872 (2021).
- 78. M. Kojima, H. Takahashi, T. Kuwashiro, K. Tanaka, H. Mori, I. Ozaki, Y. Kitajima, Y. Matsuda, K. Ashida, Y. Eguchi and K. Anzai, "Glucagon-Like Peptide-1 Receptor Agonist Prevented the Progression of Hepatocellular Carcinoma in a Mouse Model of Nonalcoholic Steatohepatitis", *Int J Mol Sci*, 21(16), 5722 (2020).
- 79. G.C. Krause, K.G. Lima, H.B. Dias, E.F.G. da Silva, G.V. Haute, B.S. Basso, R.B. Gassen, E.S. Marczak, R.S.B. Nunes and J.R. de Oliveira, "Liraglutide, a glucagonlike peptide-1 analog, induce autophagy and senescence in HepG2 cells", *Eur J Pharmacol*, 809, 32-41 (2017).
- G.C. Krause, K.G. Lima, V. Levorse, G.V. Haute, R.B. Gassen, M.C. Garcia, L. Pedrazza, M.V.F. Donadio, C. Luft and J.R. de Oliveira, "Exenatide induces autophagy and prevents the cell regrowth in HepG2 cells", *EXCLI J*, 18, 540-548 (2019).
- 81. S. Nishina, A. Yamauchi, T. Kawaguchi, K. Kaku, M. Goto, K. Sasaki, Y. Hara, Y. Tomiyama, F. Kuribayashi, T. Torimura and K. Hino, "Dipeptidyl Peptidase 4 Reduce Hepatocellular Inhibitors Activating Lymphocyte Carcinoma by Mice", Cell Chemotaxis Mol in Gastroenterol Hepatol, 7(1)m 115-134 (2019).
- W. Jiang, D. Wen, Z. Cheng, Y. Yang, G. Zheng and F. Yin, "Effect of sitagliptin, a DPP-4 inhibitor, against DENA-induced liver cancer in rats mediated via NF-kappaB activation and inflammatory cytokines", *J Biochem Mol Toxicol*, 32(12), e22220 (2018).
- C.J. Qin, L.H. Zhao, X. Zhou, H.L. Zhang, W. Wen, L. Tang, M. Zeng, M.D. Wang, G.B. Fu, S. Huang, W.J. Huang, Y. Yang, Z.J. Bao, W.P. Zhou, H.Y. Wang and H.X.

Yan, "Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2", *Cancer Lett*, 420, 26-37 (2018).

- 84. J.M. Henderson, M.S.W. Xiang, J.C. Huang, S. Wetzel, L. Jiang, J.H. Lai, W. Wu, J.G. Kench, W.W. Bachovchin, B. Roediger, G.W. McCaughan, H.E. Zhang and M.D. Gorrell, "Dipeptidyl Peptidase Inhibition Enhances CD8 Т Cell Recruitment and Activates Intrahepatic Inflammasome in a Murine Model of Hepatocellular Carcinoma". Cancers (Basel), 13(21), 5495 (2021).
- 85. M. Kawakubo, M. Tanaka, K. Ochi, A. Watanabe, M. Saka-Tanaka, Y. Kanamori, N. Yoshioka, S. Yamashita, M. Goto, M. Itoh, I. Shirakawa, S. Kanai, H. Suzuki, M. Sawada, A. Ito, M. Ishigami, M. Fujishiro, H. Arima, Y. Ogawa and T. Suganami, "Dipeptidvl peptidase-4 inhibition prevents nonalcoholic steatohepatitisand tumor associated liver fibrosis development in mice independently of its anti-diabetic effects", Sci Rep, 10(1), 983 (2020).
- 86. T.I. Chen, F.J. Lee, W.L. Hsu, Y.C. Chen and M. Chen, "Association of Dipeptidyl Peptidase-4 Inhibitors Use with Reduced Risk of Hepatocellular Carcinoma in Type 2 Diabetes Patients with Chronic HBV Infection", *Cancers (Basel)*, 15(4), 1148 (2023).
- 87. W.H. Hsu, S.P. Sue, H.L. Liang, C.W. Tseng, H.C. Lin, W.L. Wen and M.Y. Lee, "Dipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in Taiwan", *Front Public Health*, 9, 711723 (2021).
- 88. D. Abrahami, A. Douros, H. Yin, O.H. Yu, J.L. Faillie, F. Montastruc, R.W. Platt, N. Bouganim and L. Azoulay, "Incretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort study", *BMJ*, 363, k4880 (2018).
- A. Shadboorestan, P. Tarighi, M. Koosha, H. Faghihi, M.H. Ghahremani and H. Montazeri, "Growth Promotion and

Increased ATP-Binding Cassette Transporters Expression by Liraglutide in Triple Negative Breast Cancer Cell Line MDA-MB-231", *Drug Res (Stuttg)*, 71(6), 307-311 (2021).

- 90. Z.Z. Liu, X.X. Duan, M.C. Yuan, J. Yu, X. Hu, X. Han, L. Lan, B.W. Liu, Y. Wang and J.F. Qin, "Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway", *Life Sci*, 294, 120370 (2022).
- 91. C. Iwaya, T. Nomiyama, S. Komatsu, T. Kawanami, Y. Tsutsumi, Y. Hamaguchi, T. Horikawa, Y. Yoshinaga, S. Yamashita, T. Tanaka, Y. Terawaki, M. Tanabe, K. Nabeshima, A. Iwasaki and T. Yanase, "Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-kappaB Activation", *Endocrinology*, 158(12), 4218-4232 (2017).
- 92. G. Fidan-Yaylali, Y. Dodurga, M. Secme, L. Elmas, "Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells", *Tumour Biol*, 37(2), 2647-2653 (2016).
- 93. H.J. Choi, J.Y. Kim, S.C. Lim, G. Kim, H.J. Yun and H.S. Choi, "Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression", *Br J Pharmacol*, 172(21), 5096-5109 (2015).
- 94. E. Kawakita, F. Yang, S. Shi, Y. Takagaki, D. Koya and K. Kanasaki, "Inhibition of Dipeptidyl Peptidase-4 Activates Autophagy to Promote Survival of Breast Cancer Cells via the mTOR/HIF-1alpha Pathway", *Cancers (Basel)*, 15(18), (2023).
- 95. R. Li, X. Zeng, M. Yang, J. Feng, X. Xu, L. Bao, T. Ye, X. Wang, B. Xue and Y. Huang, "Antidiabetic DPP-4 Inhibitors Reprogram Tumor Microenvironment That Facilitates Murine Breast Cancer Metastasis Through Interaction With Cancer Cells via a ROS-NF-small ka, CyrillicB-NLRP3 Axis", *Front Oncol*, 11, 728047 (2021).
- B.M. Hicks, H. Yin, O.H. Yu, M.N. Pollak, R.W. Platt and L. Azoulay, "Glucagon-like peptide-1 analogues and risk of breast

cancer in women with type 2 diabetes: population based cohort study using the UK Clinical Practice Research Datalink", *BMJ*, 355, i5340 (2016).

- 97. G.F. Piccoli, L.A. Mesquita, C. Stein, M. Aziz, M. Zoldan, N.A.H. Degobi, B.F. Spiazzi, G.L. Lopes Junior, V. Colpani, F. Gerchman, "Do GLP-1 Receptor Agonists Increase the Risk of Breast Cancer? A Systematic Review and Meta-analysis", *J Clin Endocrinol Metab*, 106(3), 912-921 (2021).
- 98. D. Mao, H. Cao, M. Shi, C.C. Wang, J. Kwong, J.J.X. Li, Y. Hou, X. Ming, H.M. Lee, X.Y. Tian, C.K. Wong, E. Chow, A.P.S. Kong, V.W.Y. Lui, P.K.S. Chan and J.C.N. Chan, "Increased co-expression of PSMA2 and GLP-1 receptor in cervical cancer models in type 2 diabetes attenuated by Exendin-4: A translational case-control study", *EBioMedicine*, 65, 103242 (2021).
- 99. Y. Zhang, J. Cheng, J. Li, J. He, X. Li and F. Xu, "The GLP-1R Agonist Exendin-4 Attenuates Hyperglycemia-Induced Chemoresistance in Human Endometrial Cancer Cells Through ROS-Mediated Mitochondrial Pathway", *Front Oncol*, 11, 793530 (2021).
- 100. A. Kosowska, E. Gallego-Colon, W. Garczorz, A. Klych-Ratuszny, M.R.F. Aghdam, M. Woz Niak, A. Witek, A. Wroblewska-Czech, A. Cygal, J. Wojnar and T. Francuz, "Exenatide modulates tumor-endothelial cell interactions in human ovarian cancer cells", *Endocr Connect*, 6(8), 856-865 (2017).
- 101. W. He, S. Yu, L. Wang, M. He, X. Cao, Y. Li and H. Xiao, "Exendin-4 inhibits growth and augments apoptosis of ovarian cancer cells", *Mol Cell Endocrinol*, 436, 240-249 (2016).
- 102. X. Yang, X. Zhang, R. Wu, Q. Huang, Y. Jiang, J. Qin, F. Yao, G. Jin and Y. Zhang, "DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis", *Oncotarget*, 8(5), 8679-8692 (2017).
- 103. X. Yang, Y. Zhu, Q. Shi, X. Zhao, Y. Huang, F. Yao, Y. Zhang and Z. Wang, "Dipeptidyl peptidase IV is required for endometrial carcinoma cell proliferation

and tumorigenesis via the IL-6/STAT3 pathway", *J Obstet Gynaecol Res*, 47(7), 2449-2459 (2021).

- 104. A. Beckenkamp, J.B. Willig, D.B. Santana, J. Nascimento, J.D. Paccez, L.F. Zerbini, A.N. Bruno, D.A. Pilger, M.R. Wink and A. Buffon, "Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells", *PLoS One*, 10(7), e0134305 (2015).
- 105. A. Kosowska, W. Garczorz, A. Klych-Ratuszny, M.R.F. Aghdam, M. Kimsa-Furdzik, K. Simka-Lampa and T. Francuz, "Sitagliptin Modulates the Response of Ovarian Cancer Cells to Chemotherapeutic Agents", *Int J Mol Sci*, 21(23), 8976 (2020).
- 106. T. Nomiyama, T. Kawanami, S. Irie, Y. Hamaguchi, Y. Terawaki, K. Murase, Y. Tsutsumi, R. Nagaishi, M. Tanabe, H. Morinaga, T. Tanaka, M. Mizoguchi, K. Nabeshima, M. Tanaka and T. Yanase, "Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth", *Diabetes*, 63(11), 3891-3905 (2014).
- 107. Y. Tsutsumi, T. Nomiyama, T. Kawanami, Y. Hamaguchi, Y. Terawaki, T. Tanaka, K. Murase, R. Motonaga, M. Tanabe and T. Yanase, "Combined Treatment with Exendin-4 and Metformin Attenuates Prostate Cancer Growth", *PLoS One*, 10(10), e0139709 (2015).
- 108. X.N. Li, H.M. Bu, X.H. Ma, S. Lu, S. Zhao, Y.L. Cui and J. Sun, "Glucagon-like Peptide-1 Analogues Inhibit Proliferation and Increase Apoptosis of Human Prostate Cancer Cells *In vitro*", *Exp Clin Endocrinol Diabetes*, 125(2), 91-97 (2017).
- 109. W. He and J. Li, "Exendin-4 enhances radiation response of prostate cancer", *Prostate*, 78(15), 1125-1133 (2018).
- 110. S. Lu, H. Yin, O.H.Y. Yu and L. Azoulay, "Incretin-Based Drugs and the Incidence of Prostate Cancer Among Patients With Type 2 Diabetes", *Epidemiology*, 33(4), 563-571 (2022).
- 111. C. Skriver, S. Friis, L.B. Knudsen, A.M. Catarig, A.J. Clark, C. Dehlendorff and L.S. Morch, "Potential preventive properties of GLP-1 receptor agonists

against prostate cancer: a nationwide cohort study", *Diabetologia*, 66(11), 2007-2016 (2023).

- 112. K. Pan, W.P. Skelton, M. Elzeneini, T.C. Nguyen, A.J. Franke, A. Ali, R. Bishnoi, L. Dang, N.H. Dang and J. Kish, "A Multi-Center Retrospective Analysis Examining the Effect of Dipeptidyl Peptidase-4 Inhibitors on Progression-Free Survival in Patients With Prostate Cancer", *Cureus*, 13(4), e14712 (2021).
- 113. J.H. Jang, F. Janker, I. De Meester, S. Arni, N. Borgeaud, Y. Yamada, I. Gil Bazo, W. Weder and W. Jungraithmayr, "The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity", *Carcinogenesis*, 40(2), 324-334 (2019).
- 114. B. Zuo, T. Li, X. Liu, S. Wang, J. Cheng, X. Liu, W. Cui, H. Shi and C. Ling, "Dipeptidyl peptidase 4 inhibitor reduces tumor-associated macrophages and enhances anti-PD-L1-mediated tumor suppression in non-small cell lung cancer", *Clin Transl Oncol*, 25(11), 3188-3202 (2023).
- 115. J. Yang, S.H. Kim, E.H. Jung, S.A. Kim, K.J. Suh, J.Y. Lee, J.W. Kim, J.W. Kim, J.O. Lee, Y.J. Kim, K.W. Lee, J.H. Kim, S.M. Bang and J.S. Lee, "The effect of metformin or dipeptidyl peptidase 4 inhibitors clinical outcomes on in metastatic non-small cell lung cancer checkpoint treated with immune inhibitors", Thorac Cancer, 14(1), 52-60 (2023).
- 116. Z.J. Nie, Y.G. Zhang, Y.H. Chang, Q.Y. Li, Y.L. Zhang, "Exendin-4 inhibits glioma cell migration, invasion and epithelial-tomesenchymal transition through GLP-1R/sirt3 pathway", Biomed Pharmacother 106 1364-1369 (2018).
- 117. S. Kushiyama, M. Yashiro, Y. Yamamoto, T. Sera, A. Sugimoto, S. Nishimura, S. Togano, K. Kuroda, T. Okuno, Y. Miki and M. Ohira, "Dipeptidyl Peptidase-4 from Cancer-associated Fibroblasts Stimulates the Proliferation of Scirrhous-type Gastric Cancer Cells", *Anticancer Res*, 42(1), 501-509 (2022).
- 118. R. Barreira da Silva, M.E. Laird, N. Yatim, L. Fiette, M.A. Ingersoll and M.L. Albert,

"Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy", *Nat Immunol*, 16(8), 850-858 (2015).

- 119. K. Fujiwara, T. Inoue, Y. Henmi, Y. Hirata, Y. Naka, A. Hara, K. Kakimoto, S. Nouda, T. Okada, K. Kawakami, T. Takeuchi, K. Higuchi, "Sitagliptin, a dipeptidyl peptidase-4 inhibitor, suppresses CXCL5 and SDF-1 and does not accelerate intestinal neoplasia formation in Apc(Min/+) mice fed a high-fat diet", **Oncol Lett**, 14(4), 4355-4360 (2017).
- 120. P.I. Liang, B.W. Yeh, W.M. Li, T.C. Chan, I.W. Chang, C.N. Huang, C.C. Li, H.L. Ke, H.C. Yeh, W.J. Wu and C.F. Li, "DPP4/CD26 overexpression in urothelial carcinoma confers an independent prognostic impact and correlates with intrinsic biological aggressiveness", *Oncotarget*, 8(2), 2995-3008 (2017).
- 121. R. Pradhan, O.H.Y. Yu, R.W. Platt and L. Azoulay, "Glucagon like peptide-1 receptor agonists and the risk of skin cancer among patients with type 2 diabetes: Population-based cohort study", *Diabet Med*, 41(4), e15248 (2024).
- 122. V. Pech, K. Abusaada and C. Alemany, "Dipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid Tumor", *Case Rep Endocrinol*, 2015, 952019 (2015).
- 123. H. Wenjing, Y. Shuang, L. Weisong and X. Haipeng, "Exendin-4 does not modify growth or apoptosis of human colon cancer cells", *Endocr Res*, 42(3), 209-218 (2017).
- 124. Z. Yang, Y. Lv, M. Yu, M. Mei, L. Xiang, S. Zhao and R. Li, "GLP-1 receptor agonist-associated tumor adverse events: A real-world study from 2004 to 2021 based on FAERS", *Front Pharmacol*, 13, 925377 (2022).
- 125. J. Wang and C.H. Kim, "Differential Risk of Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists: Analysis of Real-world Databases", *Endocr Res*, 47(1), 18-25 (2022).
- 126. C. Cao, S. Yang and Z. Zhou, "GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis

of randomized controlled trials", *Endocrine*, 66(2), 157-165 (2019).

- 127. Y. Liu, X. Zhang, S. Chai, X. Zhao and L. Ji, "Risk of Malignant Neoplasia with Glucagon-Like Peptide-1 Receptor Agonist Treatment in Patients with Type 2 Diabetes: A Meta-Analysis", *J Diabetes Res*, 2019, 1534365 (2019).
- 128. Y. Noh, S.M. Jeon and S. Shin, "Association between glucose-lowering treatment and cancer metastasis among patients with preexisting type 2 diabetes and incident malignancy", *Int J Cancer*, 144(7), 1530-1539 (2019).
- 129. Y.J. Choi, D.J. Kim and S. Shin, "Incident cancer risk in dipeptidyl peptidase-4 inhibitor-treated patients with type 2 diabetes mellitus", *Cancer Manag Res*, 11 7427-7438 (2019).

العلاجات القائمة على الإنكريتين والسرطان: هل هم أعداء أم حلفاء؟ ساندى رائد بطرس – اسماء ابراهيم معتوق – جيهان حسين هيبة*

قسم الأدوية والسموم ، كلية الصيدلة ، جامعة المنيا

العلاقة بين السرطان ومرض السكرى موجودة ولكنها غير مفهومة بالكامل. تم استخدام العلاجات المعتمدة على الإنكريتين بشكل متزايد في العقد الماضي للسيطرة على مرض السكري من النوع ٢ ... (T2DM) من المفترض وجود صلة بين مسار الإنكريتين والسرطان، لكن الجدل في اللجنة العلمية يتزايد حول ما إذا كانت العلاجات المعتمدة على الإنكريتين لها آثار مفيدة أو ضارة على المرضى الذين يعانون من أمراض خبيثة أو معرضين لخطر الإصابة بالأورام الخبيثة. تلخص هذه المراجعة الأبحاث ما قبل السريرية والسريرية المنشورة التي تناقش العلاجات القائمة على الإنكريتين والسرطان. باستثناء سرطان البنكرياس، وسرطان الغدة الدرقية، وسرطان القنوات الصفراوية، تتفق البيانات المنشورة على أن العلاجات المعتمدة على الإنكريتين لها تأثير مفيد أو صفر على خطر الإصابة بالأورام الخبيثة. فيما يتعلق بسرطان البنكرياس، هناك تقارير عن حالات الإصابة بسرطان البنكرياس بعد تلقى العلاج الدوائي القائم على الإنكريتين، ولكن تأخر تكوين الأورام أمر مشكوك فيه. حتى الآن، اتفقت التحليلات التلوية على عدم ملاحظة زيادة في الإصابة بسرطان البنكرياس بين مستخدمي العلاجات المعتمدة على الإنكريتين. ما إذا كانت العلاجات المعتمدة على الإنكريتين تزيد من خطر الإصابة بسرطان الغدة الدرقية أمر مثير للجدل، لذلك فمن المستحسن تجنب وصف منبهات مستقبلات الببتيد - ١ الشبيهة بالجلوكاجون (GLP-1RAs) للمرضى الذين يعانون من ارتفاع خطر الإصابة بسرطان الغدة الدرقية. على الرغم من الدراسات العديدة المنشورة حول الانكر بتين والسر طان، إلا أنها لا تز ال مجالا غنيًا لمزيد من البحث