

Bulletin of Pharmaceutical Sciences **Assiut University** *Website: http://bpsa.journals.ekb.eg/*

INCRETIN-BASED THERAPY AND CANCER: ARE THEY ENEMIES OR ALLIES?

Sandy R. Botros, Asmaa I. Matouk, Gehan H. Heeba*

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt

The link between cancer and diabetes is established but not fully understood. Incretinbased therapy has been increasingly used in the past decade for the management of type 2 diabetes mellitus (T2DM). A link between incretin pathway and cancer has been proposed. Still a debate in the scientific committee is rising whether incretin-based therapy has beneficial or harmful effects on patients with malignant diseases or at risk of malignancy. This review summarizes the published preclinical and clinical research discussing incretin-based therapy and cancer. Except for pancreatic cancer, thyroid cancer, and cholangiocarcinoma, the published data agree that incretin-based therapy has either a beneficial or zero effect on the risk of malignancy. Regarding pancreatic cancer, there are case reports of pancreatic cancer after receiving incretin-based drug therapy but the lag time for tumorigenesis is questionable. To date, meta-analyses agreed that no increased incidence of pancreatic cancer was observed among users of incretin-based therapy. Whether incretin-based therapy increases the risk of thyroid cancer is controversial therefore it is advisable to avoid prescribing glucagon-like peptide-1 receptor agonists (GLP-1RAs) for patients with high risk for thyroid cancer. Despite the numerous studies published about incretins and cancer, it is still a rich area for further research

Keywords: Cancer; Incretin; Glucagon-like peptide-1; Dipeptidyl peptidase 4 inhibitors; Type 2 diabetes mellitus

INTRODUCTION

Cancer is one of the leading causes of death worldwide as it was reported to be responsible for about 10 million deaths in 2020 by the international agency for research on cancer¹[.](#page-12-0) It is worth mentioning that around 18% of cancer patients worldwide are diabetics but the percentage can vary depending on the population and cancer type²[.](#page-12-1)

Diabetes mellitus is an alarming growing health problem that affects around 540 million people worldwide and this number is expected to increase to 783 million by the year 2045. About 90% of those patients suffer from type 2 diabetes mellitus $(T2DM)^3$ [.](#page-12-2) Studies have observed an increased risk of different types of cancer in diabetic patients including breast, lung, endometrial, bladder, stomach, pancreas, liver, and colorectal cancer with 11% higher mortality compared to non-diabetic[s](#page-12-3)⁴. Several studies have investigated the underlying mechanisms associated with increased risk of cancer in diabetic patients including hyperinsulinemia, insulin resistance, increased oxidative stress and inflammation⁴[.](#page-12-3)

Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) released from L-cells and K-cells, respectively, are peptides that potentiate meal-stimulated insulin secretion, in addition to other effects as summarized in **[Fig. 1](#page-1-0)**. These peptides have a very short half-life owing to their degradation by dipeptidyl-peptidase 4 (DPP-4) enzyme and th[e](#page-12-4)ir renal clearance⁵.

ــ

Received : 1/8/2024 & Accepted : 24/9/2024

^{*}Corresponding author: Gehan H. Heeba, E-mail: ghhh70@yahoo.com

Fig. 1: Effect of glucagon-like peptide-1 in different organs, [m](#page-12-4)odified from⁵.

In the past decade, incretin-based therapy has been increasingly used for the management of T2DM. Incretin-based therapy includes potentiation of endogenously secreted incretins by inhibiting DPP-4 and using glucagon-like peptide-1 receptor agonists (GLP-1RAs). These drugs were introduced into clinical practice starting from 2006 after FDA approval of exenatide and sitagliptin^{[6](#page-12-5), [7](#page-13-0)}. They are widely used because of their beneficial effect on glycemic control, beta-cell functions, blood lipids level and blood pressure in addition to their few side effects and low risk of hypoglycemi[a](#page-13-1)⁸.

GLP-1 receptors are widely expressed in many tissues besides the pancreas including kidneys, lungs, cardiovascular and central nervous systems, gastrointestinal tract, as well as the skin⁹[.](#page-13-2) In addition,, GLP-1R is also found in some tumors such as thyroid cancer, pheochromocytoma, insulinoma, and brain tumors **[10](#page-13-3)**. Regarding expression of DPP-4, it is found in kidneys, vascular endothelial cells, hepatocytes, and intestinal mucosal cells. It is also found in a soluble form in plasma, bile, cerebrospinal fluid, seminal fluid, and synovial fluid. In addition, it is expressed on immune cells as natural killer cells, T-cells, B-cells, and macrophages. For its role in the immune system, it is also known as CD-26 **[11](#page-13-4)**. Studies have found that DPP-4 expression is increased in some cancers such as acute leukemia **[12](#page-13-5)**, lung papillary adenocarcinoma, prostate cancer,

hepatocellular carcinoma, brain tumors, thyroid cancer, and breast cancer, while decreased in some other types of cancer as melanoma, endometrial adenocarcinoma, Sezary syndrome and squamous cell carcinoma^{[13](#page-13-6)}.

Incretin-based therapy and pancreatic cancer

GLP-1R activation can lead to pancreatic cancer, where the hypothesis came from, and is it true?

Since the use of GLP1RAs such as liraglutide and exenatide have been linked to clinical cases of pancreatitis^{[27,](#page-14-0) [28](#page-14-1)}, a hypothesis suggesting that activation of GLP1Rs can cause pancreatitis and may even lead to pancreatic cancer after long-term use has come to the surface. This was based on the studies linking chronic pancreatitis with an increased risk of developing pancreatic cancer^{[29](#page-14-2)}. Chronic inflammation and pancreatic duct stenosis with increased intraductal pressure can lead to pancreatic cancer [30](#page-14-3). This has been established in chronic pancreatitis, but not in cases of acute pancreatitis. This finding is in favor of GLP1RAs as most cases of pancreatitis reported with the use of GLP1RAs were acute not chronic**[31](#page-14-4)**. In this review, we will discuss the studies both preclinical and clinical that either prove or decline the hypothesis that incretin-based therapy can increase the risk of developing cancer.

Table 1: Approved and under-investigations glucagon-like peptide-1 receptor agonists (GLP1RAs).

GLP-1RA	Trade Name	Half-life	Dose	Approval Date	Administration
Exenatide ⁶	Byetta®	2.4h	$5 \mu g - 10 \mu g$	28 April 2005 (FDA)	Before meal BID (S.C)
Exenatide- extended release ¹⁴	Bydureon®	2 weeks	2 _{mg}	27 Jan 2012 (FDA)	Once weekly (S.C)
Exenatide- osmotic mini- pump ¹⁵	Itca-650 [®]		$20-60$ µg/day	Not approved yet	subcutaneous delivery via an osmotic mini pump surgically placed under the skin
Liraglutide ¹⁶	Saxenda® Victoza®	13 _h	0.6mg, 1.2mg, 1.8mg, 2.4mg, 3 _{mg}	For obesity: 23 Dec 2014(FDA) 23 March2015(EMA) For T2DM: 25 Jan 2010 (FDA) 30 June 2009 (EMA)	Once daily (S.C)
Albiglutide ¹⁷	Tanzeum®	6-8 days	30 mg, 50 mg	15 April 2014 (FDA)	Once weekly (S.C)
Dulaglutide ^{18, 19}	Trulicity®	5.5 days	0.75 mg, 1.5 mg, 3 mg, 4.5 mg	18 Sep 2014 (FDA) 21 Nov 2014 (EMA)	Once weekly (S.C)
Semaglutide ²⁰	Ozempic® Wegovy®	7 days	$\overline{0.25}$ mg, 0.5mg, 1mg, 2mg $0.25mg$, 0.5mg, 1mg, 1. 7m, 2.4mg	For T2DM: 5 Dec 2017 (FDA) 8 Feb 2018 (EMA) For obesity: 4 June 2021 (FDA) 6 Jan 2022 (EMA)	Once weekly (S.C)
Semaglutide ²⁰	Rybelsus®	7 days	3mg, 7mg, 14mg	20 Sep 2019 (FDA) 3 April 2020 (EMA)	Oral (on empty stomach)
Geniposide ²¹				Not approved	
Efpeglenatide ²²		$5.6 - 7.5$ days		Not approved yet	Once weekly (S.C)
Lixisenatide ^{23, 24}	Lyxumia® Adlyxin®	3 _h	10 μg-20 μg	31 Jan 2013 (EMA) 28 July 2016 (FDA)	Once daily (S.C)
Tirzepatide (dual agonist for GIP and GLP1 receptors) ^{25, 26}	Mounjaro [®]	5 days	2.5 mg, 5 mg, 7.5 mg, 10 mg, 12.5 mg, 15 mg	13 May 2022 (FDA) 15 Sep 2022 (EMA)	Once weekly (S.C)

Preclinical studies

Inconsistent findings were observed when different cell lines or different GLP-1 agonists were used. Both exendin-4 and liraglutide induced proliferation of INS-1 cells^{[32,](#page-14-8) [33](#page-14-9)}, while in human pancreatic cancer cell lines, liraglutide showed an anti-proliferative effect and exenatide had no effect [34-36](#page-14-10). Since liraglutide induced apoptotic cell death of malignant cells both *in vitro* and *in vivo* (in human pancreatic cancer cell line and mouse xenograft model), treatment with liraglutide

may even be beneficial in diabetic patients with pancreatic cancer. It also increased the chemosensitivity of pancreatic cancer to gemcitabine in addition to its antiproliferative effect^{[35-37](#page-14-11)}. Many causes may contribute to this discrepancy including different types of cells used, different cell origins (rodents vs. human), and different agonists.

It is worth mentioning that studies by Vrang et al. 38 and Nyborg et al. 39 failed to observe any preneoplastic pancreatic lesions or increased risk of pancreatitis even after using much higher doses of liraglutide than those used clinically. Regarding sitagliptin, Matveyenko et al.^{[40](#page-14-14)} observed that sitagliptin induced ductal proliferation and metaplasia. However, Aston-Mourney et al.^{[41](#page-15-0)} reported no evidence of pancreatitis, altered ductal proliferation or metaplasia after much longer duration (1 year vs. 12 weeks). Their results were later confirmed by Forest et al. 42 who reported that neither pancreatitis nor any adverse pancreatic effects were associated with treatment with sitagliptin.

The previously described pathological changes in some rodent studies were not supported by nonhuman primate studies as treatment with either liraglutide or semaglutide, for 87 weeks and 52 weeks, respectively, was not associated with any adverse effects on the pancreas^{[43](#page-15-2)}.

Clinical studies

In 2020, a case report of pancreatic cancer after using liraglutide was published. However, the causality could not be confirmed as the patient had many other risk factors for pancreatic cancer including uncontrolled diabetes, smoking, alcohol consumption, and chronic pancreatitis. In addition, the patient used other medications and also used liraglutide for only 20 months, which seems a short time for developing cancer 44 .

Gokhale et al.^{[45](#page-15-4)}, after analyzing data from US Medicare claims, concluded that no increased risk of pancreatic cancer was associated with DPP4 inhibitors after 18 month follow-up period compared to sulfonylureas (SU) and thiazolidinediones. Furthermore, the risk was even lower when compared to SU users. Similar results were obtained from the Korean health insurance services revealing no increased risk of pancreatic cancer among DPP4I users after 8 years of follow-up^{[46](#page-15-5)}.

Monami et al. conducted two metaanalyses evaluating the safety of DPP4 inhibitors and GLP-1R agonists, analyzing results of 53 randomized controlled trials (RCT) (24 weeks or longer) and 113 RCT (11 weeks or longer), respectively, enrolling more than 20,000 DPP4Is users and more than 33000 GLP-1R agonist users. They concluded that neither the use of GLP-1RAs nor DPP-4 inhibitors increased the risk of developing pancreatitis or pancreatic cancer^{[47,](#page-15-6) [48](#page-15-7)}. Later in 2023, in collaboration with other investigators,

they published an updated meta-analysis evaluating the risk of pancreatitis and pancreatic cancer in GLP-1RAs users analyzing 43 RCT (only those with 52 weeks duration or longer were included) and drew the same conclusion^{[49](#page-15-8)}.

Pinto et al. **[50](#page-15-9)** conducted a meta-analysis to evaluate the risk of pancreatic cancer associated with DPP4Is use, they found no association between DPP4Is and pancreatic cancer, but observed a trend towards increased risk of acute pancreatitis, but the sample size was not enough to draw a conclusion. Another meta-analysis enrolling 11 cardiovascular outcome trials (CVOTs) agreed with Nreu et al. ^{[49](#page-15-8)} that both GLP-1R agonist users and DPP4Is users did not show an increased risk for pancreatic cancer but disagreed with them in estimating the risk of pancreatitis as they reported an increased risk of acute pancreatitis among DPP4 inhibitor users **[51](#page-15-10)** as previously reported by Pinto et al.

Cao et al. published a meta-analysis in 2020 stating that treatment with GLP-1RAs did not increase the risk of pancreatitis or pancreatic cancer^{[52](#page-15-11)}. Conclusively, after reviewing till date published data, regarding pancreatic cancer, despite the published cases of pancreatic cancer after incretin-based drug therapy, it remains uncertain if these cases are due to incretin-based therapy as the time between exposure and diagnosis is not enough for tumorigenesis. In addition, all metaanalyses and population-based cohort studies reported no increase in pancreatic cancer among users of GLP-1RAs and DPP4Is. It remains controversial if incretin-based therapy can induce acute pancreatitis. Meta-analyses agreed that no increased incidence of acute pancreatitis was associated with GLP-1RAs, but they disagreed on the risk of pancreatitis associated with DPP4Is as Abd El Aziz et al. and Pinto et al.^{[50,](#page-15-9) [51](#page-15-10)} observed an increased risk of acute pancreatitis after DPP4Is therapy while Monami et al. 47 reported no increased risk so it remains controversial and further studies are needed to confirm or reject the hypothesis that incretin-based therapy can induce acute pancreatitis. However, the benefits of using incretin-based therapy still outweigh any risk reported.

Incretin-based therapy and thyroid cancer *Preclinical studies*

It was reported that there is a difference between human and rat thyroid cells as the latter express more $GLP-1R^{53, 54}$ $GLP-1R^{53, 54}$ $GLP-1R^{53, 54}$ $GLP-1R^{53, 54}$. Contrarily, Gier et al. ^{[55](#page-16-0)} reported observing GLP-1R expression in normal human thyroid tissue in addition to C-cell hyperplasia, medullary and papillary thyroid cancer, raising concerns about the risk of developing thyroid cancer after long-term incretin-based therapy. However, Pyke et al.^{[56](#page-16-1)} using specific antibodies reported that GLP-1R was not expressed in normal thyroid cells in humans. These different observations may be explained by lack of specificity of the used antibodies. Bjerre K nudsen et al.^{[53](#page-15-12)} reported that 20 months liraglutide treatment was not associated with any change in plasma calcitonin level or C-cell hyperplasia in monkeys (even with doses 60 times greater than the human dose) in contrast to what was observed in rodents. Additionally, sitagliptin induced apoptosis and reduced the proliferation of thyroid carcinoma both *in vitro* and *in vivo*^{[57,](#page-16-2) [58](#page-16-3)}.

Clinical studies

Hegedüs et al. reported that no correlation was observed between serum calcitonin level, which is a marker for C-cell hyperplasia and medullary thyroid carcinoma, and liraglutide treatment after reviewing clinical trials enrolling more than 5000 patients receiving liraglutide (both diabetic patients and nondiabetic obese subjects) 59 .

In a case-control study conducted in the French population, an increased risk of thyroid cancer was observed after 1-3 years of treatment with GLP-1R agonists 60 60 60 . However, this study has limitations that may influence the interpretation of its result in clinical practice, including over diagnosis and detection bias, lack of adjustment for family history and obesity which are established risk factors for developing thyroid cancer, and short latency period **[61](#page-16-6)**. Additionally, a pharmacovigilance study found an association between GLP-1RAs use and thyroid tumors; GLP-1RAs use was associated with increased risk of thyroid tumors but the causality could not be confirmed, further studies are needed to confirm a cause-and-effect relationship between GLP-1RAs and thyroid tumors^{[62](#page-16-7)}.

On the other hand, a meta-analysis of RCTs concluded that the risk of thyroid disorders including thyroid cancer was not increased with $GLP-1RAs^{63}$ $GLP-1RAs^{63}$ $GLP-1RAs^{63}$. In addition, a prospective study evaluating the safety of alogliptin reported that no increased risk of any malignancy including thyroid cancer was observed after 3 years 64 .

Conclusively, the clinical decision of whether to use or not to use incretin-based therapy should be based on risk-benefit ratio especially since the incidence of thyroid cancer remains rare and is associated with low mortality. However, it may be more prudent to avoid the use of GLP-1RAs in patients with risk factors of thyroid cancer while encouraging more research to further understand the relation between thyroid cancer and incretin-based therapy.

Incretin-based therapy and colorectal cancer

GLP-1Rs are expressed in the GIT of humans and monkeys^{[10](#page-13-3)}. Jin hypothesized that GLP-1R overactivation may increase the risk of colon cancer in diabetic patients ^{[65](#page-16-10)}. However, later preclinical and clinical studies negated his hypothesis. *In vitro* and *in vivo* studies conducted on liraglutide, exendin-4, sitagliptin, and vildagliptin showed beneficial effects of incretin-based therapy on colorectal cancer as it decreased tumorigenesis, angiogenic ability, invasiveness, and metastasis $\frac{66-71}{66-71}$ $\frac{66-71}{66-71}$ $\frac{66-71}{66-71}$. In addition, clinical studies^{[72](#page-17-0)} proved that both GLP-1RAs and DPP4Is did not increase the risk of colorectal cancer. Further, clinical studies revealed that DPP4Is were associated with better prognosis and improved survival^{[73-75](#page-17-1)}. It is worth mentioning that in a nested case-control study, the risk of colorectal cancer in diabetic patients receiving DPP4Is was dependent on the dose as low doses were associated with reduced risk, while higher doses increased the risk this may be explained by the antiangiogenic effect of DPP4Is, which resembles the J-shaped dose-response curve of other antiangiogenic agents, by modulating plasminogen activator inhibitor-1. In addition, this complex response may also be related to the wide variety of DPP4 substrates such as stromal cellderived factor 1 (SDF-1), and substance P and the role of DPP4 enzyme in the immune system as severe inhibition of the enzyme may help cancerous cells evade the immune detection^{[76](#page-17-2)}.

Incretin-based therapy, hepatocellular carcinoma (HCC) and cholangiocarcinoma

In vitro and *in vivo* studies conducted on liraglutide showed that liraglutide enhanced the antitumor immune response and protected against nonalcoholic steatohepatitis (NASH) and $HCC^{77, 78}$ $HCC^{77, 78}$ $HCC^{77, 78}$ $HCC^{77, 78}$. It also showed antiproliferative effects against HCC^{79} HCC^{79} HCC^{79} , the same antiproliferative effect was also observed using exenatide ^{[80](#page-17-6)}. In addition, DPP4Is increased the chemotaxis of natural killer cells and Tlymphocytes, and suppressed the angiogenesis 81 81 81 . Sitagliptin showed an antitumor effect against diethyl nitrosamine-induced liver cancer^{[82](#page-17-8)}. Vildagliptin also prevented high-fat diet induced \overline{HCC}^{83} \overline{HCC}^{83} \overline{HCC}^{83} . The same antitumor effect was observed using a pan DPP inhibitor, ARI-4175[84](#page-18-0). Further, anagliptin protected against liver fibrosis and HCC independent of its effect on glucose and lipid metabolism in genetically obese mice**[85](#page-18-1)**. Clinically, users of DPP4Is showed lower risk of developing HCC in the presence of chronic hepatitis B and hepatitis $C^{86, 87}$ $C^{86, 87}$ $C^{86, 87}$ $C^{86, 87}$.

On the other hand, the incidence of cholangiocarcinoma, bile duct cancer, was higher among users of incretin-based therapy compared to SU and thiazolidinediones^{[88](#page-18-4)}.

Incretin-based therapy and breast, endometrial, ovarian, and cervical cancer

Liraglutide increased the proliferation of breast cancer cells *in vitro* and *in vivo*^{[89,](#page-18-5) [90](#page-18-6)} while exendin-4 inhibited the growth of breast cancer both *in vitro* and *in vivo* and may even have a therapeutic benefit as it may also modulate invasion and migration^{[91,](#page-18-7) [92](#page-18-8)}. Sitagliptin inhibited the proliferation of MCF7 cells and suppressed the tumor development *in vivo*^{[93](#page-18-9)} while inhibition of DPP4 by KR62436 promoted the survival of breast cancer cells 94 94 94 . In addition, studies by Li et al. showed that sitagliptin and saxagliptin may facilitate the metastasis of breast cancer using murine cell line ^{[95](#page-18-11)}. However, in a population-based cohort study, GLP-1RAs did not increase the risk of breast cancer^{[96](#page-18-12)}. The same result was proved later in the meta-analysis by Piccoli et al. after analyzing 52 RCTs enrolling more than 48 thousand GLP-1RA users $\overline{97}$ $\overline{97}$ $\overline{97}$. To date, all

available clinical data reveal that incretin-based therapy does not increase the risk of developing breast cancer; however, caution must be taken when prescribing incretin-based therapy to breast cancer patients due to concerns of increased survival and metastasis of malignant cells observed in preclinical studies.

Regarding female reproductive system cancers, incretin-based therapy has mostly a beneficial rather than harmful effect. Exendin-4 prevented the growth of cervical cancer induced by hyperglycemia *in vivo* and *in vitro*[98](#page-19-1), it also decreased the resistance of endometrial cancer to cisplatin chemotherapy 99 . Exenatide also decreased the migration and induced apoptosis of ovarian cancer [100](#page-19-3). Similar results were obtained by He et al. as they showed that exendin-4 may have antitumor effects on ovarian cancer both *in vitro* and *in* $vivo^{101}$ $vivo^{101}$ $vivo^{101}$. Sitagliptin suppressed the growth of endometrial carcinoma *in vitro* and *in vivo*^{102,} 103 while enhancing the migratory ability of cervical cancer cells *in vitro*^{[104](#page-19-7)}. It also improved the response of ovarian cancer cells to paclitaxel chemotherapy in vitro^{[105](#page-19-8)}.

Incretin-based therapy and prostate cancer

In preclinical studies, exendin-4 showed antiproliferative effects on prostate cancer cells expressing GLP-1R *in vivo* and *in vitro* **[106](#page-19-9)** and when it was combined with metformin, it produced a synergistic effect [107](#page-19-10). Later, the same effect was obtained by Li et al. by using exenatide and liraglutide^{[108](#page-19-11)}. In addition, exendin-4 also enhanced the radiosensitivity of prostate cancer cells 109 109 109 . In clinical studies, GLP-1RAs showed protective effect against prostate cancer compared to SU and basal insulin $110, 111$ $110, 111$. Additionally, DPP4Is reduced the risk of prostate cancer compared to SU **[110](#page-19-13)** but failed to improve the progression-free survival in patients with advanced stage prostate cancer compared to metformin ^{[112](#page-20-0)}.

Incretin-based therapy and lung cancer

A previous *in vivo* study showed that vildagliptin suppressed the growth of lung cancer^{[113](#page-20-1)}. In another *in vivo study*, anagliptin increased the efficacy of PD-L1 antibody against non-small cell lung cancer^{[114](#page-20-2)}. In addition, DPP4Is improved the clinical outcomes in patients receiving immune checkpoint inhibitors without increasing the adverse effects^{[115](#page-20-3)}.

Other cancers

The beneficial effects of incretin-based therapy have been reported in many tumors; exendin-4 suppressed the migration of glioma cells GLP-1R-dependent pathway^{[116](#page-20-4)}, sitagliptin suppressed the growth of gastric cancer cells, as well as melanoma $117, 118$ $117, 118$, it also decreased the number of intestinal tumors 119 119 119 .

It was found that the aggressiveness of urothelial carcinoma was correlated with DPP4 expression and DPP4 knockdown induced

apoptosis of urothelial carcinoma cells **[120](#page-20-8)** . Therefore, inhibition of DPP4 by different available DPP4Is may be of a therapeutic benefit but this is still a gap for further research.

In a cohort study conducted in the UK, GLP-1RAs did not increase the risk of developing skin cancer^{[121](#page-20-9)}. On the other hand, a case study was published in 2015 linking saxagliptin usage and serotonin level and indicating a possible relation between DPP4Is use and the activity of carcinoid tumors 122 122 122 .

Incretin-based therapy in preclinical and clinical studies *a-Glucagon-like peptide-1 receptor agonists in preclinical studies.*

Study	Agent used	Cancer type	Outcomes
In vitro study			Liraglutide resulted in inhibition of cell proliferation as
using NCI-H661	Liraglutide	Colorectal	well as migration and invasion. Also, it induced
and LOVO cell		cancer	apoptotic cell death. These effects were mediated by
lines ⁶⁶			modulating PI3K/Akt/mTOR signaling pathway.
	Liraglutide	Breast cancer	High dose liraglutide increased the proliferation and
In vivo study 90			migrative ability of breast cancer cells. These effects
			were owing to the observed overexpression of GLP1R
			in breast cancer.
In vitro study ⁹⁹	Exendin-4	Endometrial	Exendin-4 decreased resistance to cisplatin
		cancer	chemotherapy induced by hyperglycemia
In vivo and in	Exendin-4	Cervical cancer	Hyperglycemia may promote cervical cancer growth
$vitro$ study ⁹⁸			this effect was blocked by exendin-4.
	Liraglutide		Liraglutide may promote or inhibit the growth of triple
In vitro study ⁸⁹		Breast cancer	negative breast cancer cells depending on the
			concentration
In vivo and in	Liraglutide	Hepatocellular carcinoma	Liraglutide enhances the antitumor immune response
<i>vitro</i> study ⁷⁷			both in vivo and in vitro; this antitumor effect was
			mediated by natural killer cells.
In vivo study ⁷⁸	Liraglutide	Hepatocellular	Liraglutide has a protective effect against NASH and
		carcinoma	HCC.
	Liraglutide	Pancreatic cancer	GLP1RAs may be beneficial for diabetic patients with
In vivo and in			pancreatic cancer, especially those with gemcitabine-
<i>vitro</i> study ³⁷			resistant pancreatic cancer. As it enhances the
			chemosensitivity of malignant cells to gemcitabine and
			possesses antiproliferative and proapoptotic effects.
In vitro study ⁸⁰	Exenatide	Hepatocellular	Exenatide possesses antiproliferative effects against
		carcinoma	hepatocellular carcinoma.
In vitro study 116	Exendin-4	Glioblastoma	Exendin-4 suppressed the migration and invasion of
			glioma cells via GLP1R/SIRT3 pathway.
In vivo and in			Exendin-4 enhanced the radiosensitivity of prostate
$vitro$ study ¹⁰⁹	Exendin-4 Prostate cancer		cancer
In vivo and in	Exendin-4	Breast cancer	Exendin-4 inhibited the growth of breast cancer
vitro study ⁹¹			through inhibiting NF-KB activation.
In vitro study 100	Exenatide		Exenatide decreased migration and induced apoptosis
		Ovarian cancer	via activation of caspases. It may also be beneficial in
			terms of metastasis.

b-Dipeptidyl peptidase 4 inhibitors in preclinical studies.

cancer was not enough to draw a

conclusion.

Study	Agent used	Cancer type	Outcomes
Retrospective cohort study ¹¹⁰	Albiglutide, dulaglutide, exenatide, liraglutide, lixisenatide, oral semaglutide, and semaglutide	Prostate cancer	Compared to sulfonylureas, GLP1RAs showed a decreased risk of developing prostate cancer
Retrospective	GLP1RAs	Colorectal cancer	GLP1RAs use did not increase the risk
cohort study ⁷²			of colorectal cancer
Meta analysis ⁵¹	lixisenatide, liraglutide, exenatide, dulaglutide, albiglutide, and semaglutide	Pancreatic cancer and any other malignancy	No increased risk of pancreatic cancer, nor any other malignancies nor even acute pancreatitis were observed (in both individual studies and meta- analysis)
Cohort study in UK ¹²¹	Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutide	Skin cancer	In comparison to SU users, patients receiving GLP1RAs did not show any increased risk for developing skin cancer.
Cohort study in Denmark ¹¹¹	Exenatide, dulaglutide, liraglutide, lixisenatide, and semaglutide	Prostate cancer	After 5-year-follow up period, GLP1RAs may have a protective effect against prostate cancer, compared to basal insulin use; this protective effect was more prominent in older age patients and those with CVD.
Disproportionali ty analysis based on FAERS ¹²⁴	GLP1RAs	All types	No increase in all tumor cases was caused by GLP1RAs use. However, notable relation was observed between GLP1RAs and certain tumors such as thyroid cancer, islet cell neoplasm and neuroendocrine tumors.
Nested case- control study ⁶⁰	GLP1RAs	Thyroid cancer	After 1-3 years of treatment with GLP1RAs, an increased risk of thyroid cancer was observed in the French population covered by the national insurance system.
Meta-analysis of randomized controlled trials ⁶³	GLP1RAs	Thyroid cancer	GLP1RAs neither increased nor decreased the risk of thyroid cancer or other thyroid disorders.
Analysis of real- world $\mathrm{databases}^{125}$	GLP1RAs	Several types	Compared to metformin users, GLP1RA users showed decreased risk of prostate, colon, and lung cancers. On the other hand, it showed higher risk of thyroid cancer.
Case report ⁴⁴	Liraglutide	Pancreatic cancer	It is possible that liraglutide use may be related to pancreatic cancer.
Systematic review and meta-analysis ⁹⁷	GLP1RAs	Breast cancer	GLP1RAs did not increase the risk of breast tumors.
A case-non case pharmacovigilan ce study ⁶²	Exenatide, liraglutide and dulaglutide	Thyroid cancer	An association between GLP1RAs use and thyroid tumors was observed but the causality cannot be confirmed.
Meta analysis of randomized	Albiglutide, exenatide, liraglutide, lixisenatide,	Pancreatic cancer	After analyzing 43 clinical trials, no evidence for pancreatitis was observed while available data on pancreatic

c-Glucagon-like peptide-1 receptor agonists in clinical studies.

clinical trials 49

dulaglutide, and semaglutide

d-Dipeptidyl peptidase 4 inhibitors in clinical studies.

Conclusion

Different studies, both preclinical and clinical, have investigated the relation between cancer and incretins. While interpreting these studies, some points must be considered; differences between species, differences in expression of GLP-1R and DPP4 enzyme in tissues and the pleiotropic effects of GLP-1RAs and DPP4Is, especially as it is known that DPP4 enzyme works on numerous substrates which may influence cell survival, proliferation and immune response. Whether there is a role for genetic factors and ethnicity differences in the risk of malignancy, especially thyroid and pancreatic cancer, among incretin-based drug users is worth future research. Different meta-analyses and retrospective studies stated the safety of incretin-based therapy in terms of cancer risk 47 , [126,](#page-20-14) [127,](#page-21-0) 129. Other studies have even investigated the risk of metastasis in patients receiving incretin-based therapy, and found that except for primary thyroid cancer, the risk of metastasis was not increased 128 . To date, the reported benefits of incretin-based therapy outweigh the concerns about increased risk of pancreatitis and thyroid cancer, especially in light of low incidence, good prognosis, and low mortality of thyroid cancer. Future research is still needed to help us fully understand the complex connection between incretins and cancer considering studies that have supposed a protective effect of incretin-based therapy against adverse effects induced by different chemotherapy.

REFERENCES

- 1. J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram and F. Bray, "Global cancer Observatory: cancer today", Lyon, France: international agency for research on cancer", [https://gco.iarc.fr/today.](https://gco.iarc.fr/today) (Accessed August,2023). (2020).
- 2. H.F. Wolde, M.D. Molla, H. Aragie, D.G. Adugna, E.T. Teferi, E.B. Melese, Y.A. Assefa, H. Kifle, Y.B. Worku, D.G. Belay and A.A. Kibret, "High burden of diabetes and prediabetes among cancer patients at University of Gondar comprehensive specialized hospital, Northwest Ethiopia", *Sci Rep*, 13(1), 9431 (2023).
- 3. IDF, "International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium 2021", URL https://www.diabetesatlas.org (2021).
- 4. A. Nicolucci, "Epidemiological aspects of neoplasms in diabetes", *Acta Diabetol*, 47(2) 87-95 (2010).
- 5. L.L. Baggio, D.J. Drucker, "Biology of incretins: GLP-1 and GIP", *Gastroenterology* 132(6) 2131-2157 (2007).
- 6. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package: Byetta (Exenatide) NDA #021773", (2005).

[https://www.accessdata.fda.gov/drugsatfda](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021773_ByettaTOC.cfm) [_docs/nda/2005/021773_ByettaTOC.cfm.](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021773_ByettaTOC.cfm)

(Accessed 2023/08/06/13:15:42 Access 2005).

- 7. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package: Januvia (Sitagliptin Phosphate) NDA #021995", (2006). [https://www.accessdata.fda.gov/drugsatfda](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021995s000TOC.cfm) [_docs/nda/2006/021995s000TOC.cfm.](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021995s000TOC.cfm) (Accessed 2023/08/06/13:32:46 Access 2006).
- 8. D.J. Drucker, S.I. Sherman, F.S. Gorelick, R.M. Bergenstal, R.S. Sherwin and J.B. Buse, "Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits", *Diabetes Care*, 33(2) 428-433 (2010).
- 9. X. Zhao, M. Wang, Z. Wen, Z. Lu, L. Cui, C. Fu, H. Xue, Y. Liu and Y. Zhang, "GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects", *Front Endocrinol (Lausanne),* 12, 721135 (2021).
- 10. M. Korner, M. Stockli, B. Waser and J.C. Reubi, "GLP-1 receptor expression in human tumors and human normal tissues: potential for *In vivo* targeting", *J Nucl Med*, 48(5) 736-743 (2007).
- 11. S.M. Kang and J.H. Park, "Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control", *Clin Med Insights Endocrinol Diabetes*, 14, 11795514211051698 (2021).
- 12. C.F. de Andrade, R. Bigni, M.S. Pombode-Oliveira, G. Alves and D.A. Pereira, "CD26/DPPIV cell membrane expression and DPPIV activity in plasma of patients with acute leukemia", *J Enzyme Inhib Med Chem*, 24(3) 708-714 (2009).
- 13. T. Stulc and A. Sedo, "Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects?", *Diabetes Res Clin Pract*, 88(2) 125-131 (2010).
- 14. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package", BYDUREON (exenatide) NDA 022200", [https://www.accessdata.fda.gov/drugsatfda](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022200Orig1s000TOC.cfm) [_docs/nda/2012/022200Orig1s000TOC.cf](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022200Orig1s000TOC.cfm) [m.](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022200Orig1s000TOC.cfm) (Accessed 2024/07/25/06:57:39 Access 2012). (2012).
- 15. T. Bertsch and K. McKeirnan, "Itca 650", *Clin Diabetes*, 36(3) 265-267 (2018).
- 16. E.W. Iepsen, S.S. Torekov and J.J. Holst, "Liraglutide for Type 2 diabetes and obesity: a 2015 update", *Expert Rev Cardiovasc Ther,* 13(7) 753-67 (2015).
- 17. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package", Tanzeum (Albiglutide) NDA # 125431", (2014). [https://www.accessdata.fda.gov/drugsatfda](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125431Orig1s000TOC.cfm/125431Orig1s000ChemRedt.pdf) [_docs/nda/2014/125431Orig1s000TOC.cf](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125431Orig1s000TOC.cfm/125431Orig1s000ChemRedt.pdf) [m/125431Orig1s000ChemRedt.pdf.](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125431Orig1s000TOC.cfm/125431Orig1s000ChemRedt.pdf) (Accessed 2024/07/25/07:11:42 Access 2014).
- 18. C.f.D.E.a.R. U.S. Food and Drug Administration, "Drug Approval Package: Trulicity (dulaglutide) NDA # 125469", (2014). [https://www.accessdata.fda.gov/drugsatfda](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125469Orig1s000TOC.cfm) [_docs/nda/2014/125469Orig1s000TOC.cf](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125469Orig1s000TOC.cfm)

[m.](https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125469Orig1s000TOC.cfm) (Accessed 2024/07/25/07:35:08 Access 2014).

- 19. E.M.A. European Medicines Agency, "Trulicity ", (2014). [https://www.ema.europa.eu/en/medicines/](https://www.ema.europa.eu/en/medicines/human/EPAR/trulicity) [human/EPAR/trulicity.](https://www.ema.europa.eu/en/medicines/human/EPAR/trulicity) (Accessed 2024/07/25/07:42:20 Access 2014).
- 20. A.M. Chao, J.S. Tronieri, A. Amaro and T.A. Wadden, "Semaglutide for the treatment of obesity", *Trends Cardiovasc Med*, 33(3) 159-166 (2023).
- 21. Y. Zhang, Y. Ding, X. Zhong, Q. Guo, H. Wang, J. Gao, T. Bai, L. Ren, Y. Guo, X. Jiao and Y. Liu, "Geniposide acutely stimulates insulin secretion in pancreatic beta-cells by regulating GLP-1 receptor/cAMP signaling and ion channels", *Mol Cell Endocrinol,* 430, 89- 96 (2016).
- 22. R.E. Pratley, J. Kang, M.E. Trautmann, M. Hompesch, O. Han, J. Stewart, C.H. Sorli, S. Jacob and K.H. Yoon, "Body weight management and safety with efpeglenatide in adults without diabetes: A phase II randomized study", *Diabetes Obes Metab*, 21(11) 2429-2439 (2019).
- 23. C.f.D.E.a.R. U.S. Food and Drug Administration, "FDA approves Adlyxin to treat type 2 diabetes", (2016). [https://www.fda.gov/news-events/press](https://www.fda.gov/news-events/press-announcements/fda-approves-adlyxin-treat-type-2-diabetes)[announcements/fda-approves-adlyxin](https://www.fda.gov/news-events/press-announcements/fda-approves-adlyxin-treat-type-2-diabetes)[treat-type-2-diabetes.](https://www.fda.gov/news-events/press-announcements/fda-approves-adlyxin-treat-type-2-diabetes) Access 2016).
- 24. E.M.A. European Medicines Agency, "Lyxumia ", (2013). [https://www.ema.europa.eu/en/medicines/](https://www.ema.europa.eu/en/medicines/human/EPAR/lyxumia) [human/EPAR/lyxumia.](https://www.ema.europa.eu/en/medicines/human/EPAR/lyxumia) (Accessed 2024/07/25/08:18:56 Access 2013).
- 25. C.f.D.E.a.R. U.S. Food and Drug Administration, "FDA Approves Novel, Dual-Targeted Treatment for Type 2 Diabetes", (2022). [https://www.fda.gov/news-events/press](https://www.fda.gov/news-events/press-announcements/fda-approves-novel-dual-targeted-treatment-type-2-diabetes)[announcements/fda-approves-novel-dual](https://www.fda.gov/news-events/press-announcements/fda-approves-novel-dual-targeted-treatment-type-2-diabetes)[targeted-treatment-type-2-diabetes.](https://www.fda.gov/news-events/press-announcements/fda-approves-novel-dual-targeted-treatment-type-2-diabetes) Access 2022).
- 26. E.M.A. European Medicines Agency, "Mounjaro", (2022). [https://www.ema.europa.eu/en/medicines/](https://www.ema.europa.eu/en/medicines/human/EPAR/mounjaro) [human/EPAR/mounjaro.](https://www.ema.europa.eu/en/medicines/human/EPAR/mounjaro) (Accessed 2023/09/07/08:29:56 Access 2022).
- 27. S.R. Ahmad, J. Swann, "Exenatide and rare adverse events", *N Engl J Med* 358(18) 1970-1971, discussion 1971-1972 (2008).
- 28. A.S. Franks, P.H. Lee and C.M. George, "Pancreatitis: a potential complication of liraglutide?", *Ann Pharmacother,* 46(11), 1547-1553 (2012).
- 29. A.B. Lowenfels, P. Maisonneuve, G. Cavallini, R.W. Ammann, P.G. Lankisch, J.R. Andersen, E.P. Dimagno, A. Andren-Sandberg and L. Domellof, "Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group", *N Engl J Med,* 328(20), 1433-1437 (1993).
- 30. U.K. Bhanot and P. Moller, "Mechanisms of parenchymal injury and signaling pathways in ectatic ducts of chronic pancreatitis: implications for pancreatic carcinogenesis", *Lab Invest*, 89(5), 489- 497 (2009).
- 31. H. Storgaard, F. Cold, L.L. Gluud, T. Vilsboll and F.K. Knop, "Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes", *Diabetes Obes Metab*, 19(6), 906-908 (2017).
- 32. J.H. Kang, M.J. Kim, S.H. Ko, I.K. Jeong, K.H. Koh, D.J. Rhie, S.H. Yoon, S.J. Hahn, M.S. Kim and Y.H. Jo, "Upregulation of rat Ccnd1 gene by exendin-4 in pancreatic beta cell line INS-1: interaction of early growth response-1

with cis-regulatory element", *Diabetologia*, 49(5), 969-979 (2006).

- 33. Z.F. Chen, Y.B. Li, J.Y. Han, J.J. Yin, Y. Wang, L.B. Zhu and G.Y. Xie, "Liraglutide prevents high glucose level induced insulinoma cells apoptosis by targeting autophagy", *Chin Med J (Engl)*, 126(5), 937-941 (2013).
- 34. Y.H. Feng, G. Velazquez-Torres, C. Gully, J. Chen, M.H. Lee and S.C. Yeung, "The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth", *J Cell Mol Med*, 15(4), 825-836 (2011).
- 35. H. Zhao, L. Wang, R. Wei, D. Xiu, M. Tao, J. Ke, Y. Liu, J. Yang and T. Hong, "Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway", *Diabetes Obes Metab*, 16(9), 850-860 (2014).
- 36. H. Zhao, R. Wei, L. Wang, Q. Tian, M. Tao, J. Ke, Y. Liu, W. Hou, L. Zhang, J. Yang and T. Hong, "Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMPdependent manner", *Am J Physiol Endocrinol Metab*, 306(12), E1431- E1441 (2014).
- 37. H.J. Zhao, X. Jiang, L.J. Hu, L. Yang, L.D. Deng, Y.P. Wang and Z.P. Ren, "Activation of GLP-1 receptor enhances the chemosensitivity of pancreatic cancer cells", *J Mol Endocrinol*, 64(2), 103-113 (2020).
- 38. N. Vrang, J. Jelsing, L. Simonsen, A.E. Jensen, I. Thorup, H. Soeborg and L.B. Knudsen, "The effects of 13 wk of liraglutide treatment on endocrine and exocrine pancreas in male and female ZDF rats: a quantitative and qualitative analysis revealing no evidence of drug-induced pancreatitis", *Am J Physiol Endocrinol Metab*, 303(2), E253-E264 (2012).
- 39. N.C. Nyborg, A.M. Molck, L.W. Madsen and L.B. Knudsen, "The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species", *Diabetes,* 61(5), 1243-1249 (2012).
- 40. A.V. Matveyenko, S. Dry, H.I. Cox, A. Moshtaghian, T. Gurlo, R. Galasso, A.E.

Butler and P.C. Butler, "Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin", *Diabetes,* 58(7), 1604-1615 (2009).

- 41. K. Aston-Mourney, S.L. Subramanian, S. Zraika, T. Samarasekera, D.T. Meier, L.C. Goldstein and R.L. Hull, "One year of sitagliptin treatment protects against islet amyloid-associated beta-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice", *Am J Physiol Endocrinol Metab* 305(4), E475-E484 (2013).
- 42. T. Forest, D. Holder, A. Smith, C. Cunningham, X. Yao, M. Dey, C. Frederick and S. Prahalada, "Characterization of the exocrine pancreas in the male Zucker diabetic fatty rat model of type 2 diabetes mellitus following 3 months of treatment with sitagliptin", *Endocrinology*, 155(3), 783-792 (2014).
- 43. C.F. Gotfredsen, A.M. Molck, I. Thorup, N.C. Nyborg, Z. Salanti, L.B. Knudsen and M.O. Larsen, "The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates", *Diabetes*, 63(7), 2486-2497 (2014).
- 44. S. Wu, J. Wang, L. Jing and L. Chen, "A Diabetic Patient Complicated With Pancreatic Cancer After Using Liraglutide: A Case Report", Front Endocrinol (Lausanne) 11 608966 (2020).
- 45. M. Gokhale, J.B. Buse, C.L. Gray, V. Pate, M.A. Marquis, T. Sturmer, "Dipeptidylpeptidase-4 inhibitors and pancreatic cancer: a cohort study", *Diabetes Obes Metab*, 16(12), 1247-1256 (2014).
- 46. M.K. Kim, K. Han, H.S. Kwon and S.J. Yoo, "Risk of Pancreatic Cancer and Use of Dipeptidyl Peptidase 4 Inhibitors in Patients with Type 2 Diabetes: A Propensity Score-Matching Analysis", *Endocrinol Metab (Seoul),* 38(4), 426- 435 (2023).
- 47. M. Monami, I. Dicembrini, D. Martelli and E. Mannucci, "Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials", *Curr Med Res Opin*, 27(Suppl 3), 57-64 (2011).
- 48. M. Monami, B. Nreu, A. Scatena, B. Cresci, F. Andreozzi, G. Sesti, E. Mannucci, "Safety issues with glucagonlike peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials", *Diabetes Obes Metab*, 19(9), 1233-1241 (2017).
- 49. B. Nreu, I. Dicembrini, F. Tinti, E. Mannucci and M. Monami, "Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: an updated meta-analysis of randomized controlled trials", *Minerva Endocrinol (Torino)*, 48(2), 206-213 (2023).
- 50. L.C. Pinto, D.V. Rados, S.S. Barkan, C.B. Leitao and J.L. Gross, "Dipeptidyl peptidase-4 inhibitors, pancreatic cancer and acute pancreatitis: A meta-analysis with trial sequential analysis", *Sci Rep*, 8(1), 782 (2018).
- 51. M. Abd El Aziz, O. Cahyadi, J.J. Meier, W.E. Schmidt, M.A. Nauck, "Incretinbased glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials", *Diabetes Obes Metab*, 22(4), 699-704 (2020).
- 52. C. Cao, S. Yang and Z. Zhou, "GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials", *Endocrine*, 68(3), 518-525 (2020).
- 53. L. Bjerre Knudsen, L.W. Madsen, S. Andersen, K. Almholt, A.S. de Boer, D.J. Drucker, C. Gotfredsen, F.L. Egerod, A.C. Hegelund, H. Jacobsen, S.D. Jacobsen, A.C. Moses, A.M. Molck, H.S. Nielsen, J. Nowak, H. Solberg, T.D. Thi, M. Zdravkovic and U. Moerch, "Glucagonlike Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation", *Endocrinology,* 151(4), 1473-1486 (2010).
- 54. F. Boess, C. Bertinetti-Lapatki, S. Zoffmann, C. George, T. Pfister, A. Roth, S.M. Lee, W.E. Thasler, T. Singer and L. Suter, "Effect of GLP1R agonists taspoglutide and liraglutide on primary

thyroid C-cells from rodent and man", *J Mol Endocrinol*, 50(3) 325-336 (2013).

- 55. B. Gier, P.C. Butler, C.K. Lai, D. Kirakossian, M.M. DeNicola and M.W. Yeh, "Glucagon like peptide-1 receptor expression in the human thyroid gland", *J Clin Endocrinol Metab*, 97(1), 121-131 (2012).
- 56. C. Pyke, R.S. Heller, R.K. Kirk, C. Orskov, S. Reedtz-Runge, P. Kaastrup, A. Hvelplund, L. Bardram, D. Calatayud and L.B. Knudsen, "GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody", *Endocrinology*, 155(4), 1280- 1290 (2014).
- 57. X. Hu, S. Chen, C. Xie, Z. Li, Z. Wu, Z. You, "DPP4 gene silencing inhibits proliferation and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through suppression of the MAPK pathway", *J Endocrinol Invest*, 44(8), 1609-1623 (2021).
- 58. J.J. Lee, T.Y. Wang, C.L. Liu, M.N. Chien, M.J. Chen, Y.C. Hsu, C.H. Leung and S.P. Cheng, "Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma", *J Clin Endocrinol Metab*, 102(8), 2930-2940 (2017).
- 59. L. Hegedüs, A.C. Moses, M. Zdravkovic, T. Le Thi and G.H. Daniels, "GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide", *J Clin Endocrinol Metab,* 96(3), 853-860 (2011).
- 60. J. Bezin, A. Gouverneur, M. Penichon, C. Mathieu, R. Garrel, D. Hillaire-Buys, A. Pariente and J.L. Faillie, "GLP-1 Receptor Agonists and the Risk of Thyroid Cancer", *Diabetes Care*, 46(2) ,384-390 (2023).
- 61. C.A. Thompson and T. Sturmer, "Putting GLP-1 RAs and Thyroid Cancer in Context: Additional Evidence and Remaining Doubts", *Diabetes Care*, 46(2), 249-251 (2023).
- 62. G. Mali, V. Ahuja and K. Dubey, "Glucagon-like peptide-1 analogues and

thyroid cancer: An analysis of cases reported in the European pharmacovigilance database", *J Clin Pharm Ther*, 46(1), 99-105 (2021).

- 63. W. Hu, R. Song, R. Cheng, C. Liu, R. Guo, W. Tang, J. Zhang, Q. Zhao, X. Li and J. Liu, "Use of GLP-1 Receptor Agonists and Occurrence of Thyroid Disorders: a Meta-Analysis of Randomized Controlled Trials", *Front Endocrinol (Lausanne)*, 13, 927859 (2022).
- 64. K. Ueki, Y. Tanizawa, J. Nakamura, Y. Yamada, N. Inagaki, H. Watada, I. Shimomura, R. Nishimura, H. Miyoshi, A. Abiko, H. Katagiri, M. Hayashi, A. Shimada, K. Naruse, S. Fujimoto, M. Fujiwara, K. Shikata, Y. Okada, E. Araki, T. Yamazaki, T. Kadowaki and J.B.R. Group, "Long-term safety and efficacy of alogliptin, a DPP-4 inhibitor, in patients with type 2 diabetes: a 3-year prospective. controlled, observational study (J-BRAND Registry)", *BMJ Open Diabetes Res Care*, 9(1), e001787 (2021).
- 65. T. Jin, "Why diabetes patients are more prone to the development of colon cancer?", *Med Hypotheses*, 71(2), 241- 244 (2008).
- 66. G. Tong, T. Peng, Y. Chen, L. Sha, H. Dai, Y. Xiang, Z. Zou, H. He and S. Wang, "Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway", *Front Pharmacol*, 13, 901559 (2022).
- 67. X. Zheng, J. Liu, X. Li, R. Tian, K. Shang, X. Dong and B. Cao, "Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells", *Cancer Lett*, 497, 190-201 (2021).
- 68. J.H. Jang, L. Baerts, Y. Waumans, I. De Meester, Y. Yamada, P. Limani, I. Gil-Bazo, W. Weder, W. Jungraithmayr, "Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice", *Clin Exp Metastasis*, 32(7), 677- 687 (2015).
- 69. C.A. Amritha, P. Kumaravelu and D.D. Chellathai, "Evaluation of Anti Cancer Effects of DPP-4 Inhibitors in Colon

Cancer- An Invitro Study", *J Clin Diagn Res*, 9(12), FC14-FC16 (2015).

- 70. N. Yorifuji, T. Inoue, M. Iguchi, K. Fujiwara, K. Kakimoto, S. Nouda, T. Okada, K. Kawakami, Y. Abe, T. Takeuchi and K. Higuchi, "The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice", *Oncol Rep,* 35(2), 676-682 (2016).
- 71. R. Varela-Calvino, M. Rodriguez-Quiroga, P. Dias Carvalho, F. Martins, A. Serra-Roma, L. Vazquez-Iglesias, M. Paez de la Cadena, S. Velho and O.J. Cordero, "The mechanism of sitagliptin inhibition of colorectal cancer cell lines' metastatic functionalities", *IUBMB Life*, 73(5), 761- 773 (2021).
- 72. D. Abrahami, H. Yin, O.H.Y. Yu, M.N. Pollak and L. Azoulay, "Incretin-based Drugs and the Incidence of Colorectal Cancer in Patients with Type 2 Diabetes", *Epidemiology,* 29(2), 246-253 (2018).
- 73. L. Ng, D.C. Foo, C.K. Wong, A.T. Man, O.S. Lo and W.L. Law, "Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study", *Cancers (Basel)*, 13(14), 3588 (2021).
- 74. R. Bishnoi, Y.R. Hong, C. Shah, A. Ali, W.P.t. Skelton, J. Huo, N.H. Dang and L.H. Dang, "Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study", *Cancer Med*, 8(8), 3918-3927 (2019).
- 75. A. Ali, A. Fuentes, W.I. Skelton, Y. Wang, S. McGorray, C. Shah, R. Bishnoi, L.H. Dang and N.H. Dang, "A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers", *Mol Clin Oncol*, 10(1), 118-124 (2019).
- 76. C.L. Chou, S.H. Juan, C.H. Li, H.H. Chen, C.C. Kao, L.Y. Chen, L.N. Chien and T.C. Fang, "Association Between DPP-4 Inhibitors and Events of Colorectal and Liver Cancers in Patients With Diabetes Receiving Second-Line Agents: A Nested

Case-Control Study", *Front Oncol*, 12, 840142 (2022).

- 77. X. Lu, C. Xu, J. Dong, S. Zuo, H. Zhang, C. Jiang, J. Wu and J. Wei, "Liraglutide activates nature killer cell-mediated antitumor responses by inhibiting IL-6/STAT3 signaling in hepatocellular carcinoma", *Transl Oncol*, 14(1), 100872 (2021).
- 78. M. Kojima, H. Takahashi, T. Kuwashiro, K. Tanaka, H. Mori, I. Ozaki, Y. Kitajima, Y. Matsuda, K. Ashida, Y. Eguchi and K. Anzai, "Glucagon-Like Peptide-1 Receptor Agonist Prevented the Progression of Hepatocellular Carcinoma in a Mouse Model of Nonalcoholic Steatohepatitis", *Int J Mol Sci*, 21(16), 5722 (2020).
- 79. G.C. Krause, K.G. Lima, H.B. Dias, E.F.G. da Silva, G.V. Haute, B.S. Basso, R.B. Gassen, E.S. Marczak, R.S.B. Nunes and J.R. de Oliveira, "Liraglutide, a glucagonlike peptide-1 analog, induce autophagy and senescence in HepG2 cells", *Eur J Pharmacol*, 809, 32-41 (2017).
- 80. G.C. Krause, K.G. Lima, V. Levorse, G.V. Haute, R.B. Gassen, M.C. Garcia, L. Pedrazza, M.V.F. Donadio, C. Luft and J.R. de Oliveira, "Exenatide induces autophagy and prevents the cell regrowth in HepG2 cells", *EXCLI J*, 18, 540-548 (2019).
- 81. S. Nishina, A. Yamauchi, T. Kawaguchi, K. Kaku, M. Goto, K. Sasaki, Y. Hara, Y. Tomiyama, F. Kuribayashi, T. Torimura and K. Hino, "Dipeptidyl Peptidase 4 Inhibitors Reduce Hepatocellular Carcinoma by Activating Lymphocyte Chemotaxis in Mice", *Cell Mol Gastroenterol Hepatol*, 7(1)m 115-134 (2019).
- 82. W. Jiang, D. Wen, Z. Cheng, Y. Yang, G. Zheng and F. Yin, "Effect of sitagliptin, a DPP-4 inhibitor, against DENA-induced liver cancer in rats mediated via NFkappaB activation and inflammatory cytokines", *J Biochem Mol Toxicol*, 32(12), e22220 (2018).
- 83. C.J. Qin, L.H. Zhao, X. Zhou, H.L. Zhang, W. Wen, L. Tang, M. Zeng, M.D. Wang, G.B. Fu, S. Huang, W.J. Huang, Y. Yang, Z.J. Bao, W.P. Zhou, H.Y. Wang and H.X.

Yan, "Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2", *Cancer Lett*, 420, 26-37 (2018).

- 84. J.M. Henderson, M.S.W. Xiang, J.C. Huang, S. Wetzel, L. Jiang, J.H. Lai, W. Wu, J.G. Kench, W.W. Bachovchin, B. Roediger, G.W. McCaughan, H.E. Zhang and M.D. Gorrell, "Dipeptidyl Peptidase Inhibition Enhances CD8 T Cell Recruitment and Activates Intrahepatic Inflammasome in a Murine Model of Hepatocellular Carcinoma", *Cancers (Basel)*, 13(21), 5495 (2021).
- 85. M. Kawakubo, M. Tanaka, K. Ochi, A. Watanabe, M. Saka-Tanaka, Y. Kanamori, N. Yoshioka, S. Yamashita, M. Goto, M. Itoh, I. Shirakawa, S. Kanai, H. Suzuki, M. Sawada, A. Ito, M. Ishigami, M. Fujishiro, H. Arima, Y. Ogawa and T. Suganami, "Dipeptidyl peptidase-4 inhibition prevents nonalcoholic steatohepatitisassociated liver fibrosis and tumor development in mice independently of its anti-diabetic effects", *Sci Rep*, 10(1), 983 (2020).
- 86. T.I. Chen, F.J. Lee, W.L. Hsu, Y.C. Chen and M. Chen, "Association of Dipeptidyl Peptidase-4 Inhibitors Use with Reduced Risk of Hepatocellular Carcinoma in Type 2 Diabetes Patients with Chronic HBV Infection", *Cancers (Basel)*, 15(4), 1148 (2023).
- 87. W.H. Hsu, S.P. Sue, H.L. Liang, C.W. Tseng, H.C. Lin, W.L. Wen and M.Y. Lee, "Dipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in Taiwan", *Front Public Health*, 9, 711723 (2021).
- 88. D. Abrahami, A. Douros, H. Yin, O.H. Yu, J.L. Faillie, F. Montastruc, R.W. Platt, N. Bouganim and L. Azoulay, "Incretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort study", *BMJ*, 363, k4880 (2018).
- 89. A. Shadboorestan, P. Tarighi, M. Koosha, H. Faghihi, M.H. Ghahremani and H. Montazeri, "Growth Promotion and

Increased ATP-Binding Cassette Transporters Expression by Liraglutide in Triple Negative Breast Cancer Cell Line MDA-MB-231", *Drug Res (Stuttg)*, 71(6), 307-311 (2021).

- 90. Z.Z. Liu, X.X. Duan, M.C. Yuan, J. Yu, X. Hu, X. Han, L. Lan, B.W. Liu, Y. Wang and J.F. Qin, "Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway", *Life Sci*, 294, 120370 (2022).
- 91. C. Iwaya, T. Nomiyama, S. Komatsu, T. Kawanami, Y. Tsutsumi, Y. Hamaguchi, T. Horikawa, Y. Yoshinaga, S. Yamashita, T. Tanaka, Y. Terawaki, M. Tanabe, K. Nabeshima, A. Iwasaki and T. Yanase, "Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-kappaB Activation", *Endocrinology*, 158(12), 4218-4232 (2017).
- 92. G. Fidan-Yaylali, Y. Dodurga, M. Secme, L. Elmas, "Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells", *Tumour Biol*, 37(2), 2647-2653 (2016).
- 93. H.J. Choi, J.Y. Kim, S.C. Lim, G. Kim, H.J. Yun and H.S. Choi, "Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression", *Br J Pharmacol*, 172(21), 5096-5109 (2015).
- 94. E. Kawakita, F. Yang, S. Shi, Y. Takagaki, D. Koya and K. Kanasaki, "Inhibition of Dipeptidyl Peptidase-4 Activates Autophagy to Promote Survival of Breast Cancer Cells via the mTOR/HIF-1alpha Pathway", *Cancers (Basel)*, 15(18), (2023).
- 95. R. Li, X. Zeng, M. Yang, J. Feng, X. Xu, L. Bao, T. Ye, X. Wang, B. Xue and Y. Huang, "Antidiabetic DPP-4 Inhibitors Reprogram Tumor Microenvironment That Facilitates Murine Breast Cancer Metastasis Through Interaction With Cancer Cells via a ROS-NF-small ka, CyrillicB-NLRP3 Axis", *Front Oncol*, 11, 728047 (2021).
- 96. B.M. Hicks, H. Yin, O.H. Yu, M.N. Pollak, R.W. Platt and L. Azoulay, "Glucagon-like peptide-1 analogues and risk of breast

cancer in women with type 2 diabetes: population based cohort study using the UK Clinical Practice Research Datalink", *BMJ*, 355, i5340 (2016).

- 97. G.F. Piccoli, L.A. Mesquita, C. Stein, M. Aziz, M. Zoldan, N.A.H. Degobi, B.F. Spiazzi, G.L. Lopes Junior, V. Colpani, F. Gerchman, "Do GLP-1 Receptor Agonists Increase the Risk of Breast Cancer? A Systematic Review and Meta-analysis", *J Clin Endocrinol Metab*, 106(3), 912-921 (2021).
- 98. D. Mao, H. Cao, M. Shi, C.C. Wang, J. Kwong, J.J.X. Li, Y. Hou, X. Ming, H.M. Lee, X.Y. Tian, C.K. Wong, E. Chow, A.P.S. Kong, V.W.Y. Lui, P.K.S. Chan and J.C.N. Chan, "Increased co-expression of PSMA2 and GLP-1 receptor in cervical cancer models in type 2 diabetes attenuated by Exendin-4: A translational case-control study", *EBioMedicine,* 65, 103242 (2021).
- 99. Y. Zhang, J. Cheng, J. Li, J. He, X. Li and F. Xu, "The GLP-1R Agonist Exendin-4 Attenuates Hyperglycemia-Induced Chemoresistance in Human Endometrial Cancer Cells Through ROS-Mediated Mitochondrial Pathway", *Front Oncol*, 11, 793530 (2021).
- 100. A. Kosowska, E. Gallego-Colon, W. Garczorz, A. Klych-Ratuszny, M.R.F. Aghdam, M. Woz Niak, A. Witek, A. Wroblewska-Czech, A. Cygal, J. Wojnar and T. Francuz, "Exenatide modulates tumor-endothelial cell interactions in human ovarian cancer cells", *Endocr Connect*, 6(8), 856-865 (2017).
- 101. W. He, S. Yu, L. Wang, M. He, X. Cao, Y. Li and H. Xiao, "Exendin-4 inhibits growth and augments apoptosis of ovarian cancer cells", *Mol Cell Endocrinol*, 436, 240-249 (2016).
- 102. X. Yang, X. Zhang, R. Wu, Q. Huang, Y. Jiang, J. Qin, F. Yao, G. Jin and Y. Zhang, "DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis", *Oncotarget*, 8(5), 8679- 8692 (2017).
- 103. X. Yang, Y. Zhu, Q. Shi, X. Zhao, Y. Huang, F. Yao, Y. Zhang and Z. Wang, "Dipeptidyl peptidase IV is required for endometrial carcinoma cell proliferation

and tumorigenesis via the IL-6/STAT3 pathway", *J Obstet Gynaecol Res*, 47(7), 2449-2459 (2021).

- 104. A. Beckenkamp, J.B. Willig, D.B. Santana, J. Nascimento, J.D. Paccez, L.F. Zerbini, A.N. Bruno, D.A. Pilger, M.R. Wink and A. Buffon, "Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells", *PLoS One*, 10(7), e0134305 (2015).
- 105. A. Kosowska, W. Garczorz, A. Klych-Ratuszny, M.R.F. Aghdam, M. Kimsa-Furdzik, K. Simka-Lampa and T. Francuz, "Sitagliptin Modulates the Response of Ovarian Cancer Cells to Chemotherapeutic Agents", *Int J Mol Sci*, 21(23), 8976 (2020).
- 106. T. Nomiyama, T. Kawanami, S. Irie, Y. Hamaguchi, Y. Terawaki, K. Murase, Y. Tsutsumi, R. Nagaishi, M. Tanabe, H. Morinaga, T. Tanaka, M. Mizoguchi, K. Nabeshima, M. Tanaka and T. Yanase, "Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth", *Diabetes*, 63(11), 3891-3905 (2014).
- 107. Y. Tsutsumi, T. Nomiyama, T. Kawanami, Y. Hamaguchi, Y. Terawaki, T. Tanaka, K. Murase, R. Motonaga, M. Tanabe and T. Yanase, "Combined Treatment with Exendin-4 and Metformin Attenuates Prostate Cancer Growth", *PLoS One*, 10(10), e0139709 (2015).
- 108. X.N. Li, H.M. Bu, X.H. Ma, S. Lu, S. Zhao, Y.L. Cui and J. Sun, "Glucagon-like Peptide-1 Analogues Inhibit Proliferation and Increase Apoptosis of Human Prostate Cancer Cells *In vitro*", *Exp Clin Endocrinol Diabetes*, 125(2), 91-97 (2017).
- 109. W. He and J. Li, "Exendin-4 enhances radiation response of prostate cancer", *Prostate*, 78(15), 1125-1133 (2018).
- 110. S. Lu, H. Yin, O.H.Y. Yu and L. Azoulay, "Incretin-Based Drugs and the Incidence of Prostate Cancer Among Patients With Type 2 Diabetes", *Epidemiology*, 33(4), 563-571 (2022).
- 111. C. Skriver, S. Friis, L.B. Knudsen, A.M. Catarig, A.J. Clark, C. Dehlendorff and L.S. Morch, "Potential preventive properties of GLP-1 receptor agonists

against prostate cancer: a nationwide cohort study", *Diabetologia*, 66(11), 2007- 2016 (2023).

- 112. K. Pan, W.P. Skelton, M. Elzeneini, T.C. Nguyen, A.J. Franke, A. Ali, R. Bishnoi, L. Dang, N.H. Dang and J. Kish, "A Multi-Center Retrospective Analysis Examining the Effect of Dipeptidyl Peptidase-4 Inhibitors on Progression-Free Survival in Patients With Prostate Cancer", *Cureus,* 13(4), e14712 (2021).
- 113. J.H. Jang, F. Janker, I. De Meester, S. Arni, N. Borgeaud, Y. Yamada, I. Gil Bazo, W. Weder and W. Jungraithmayr, "The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity", *Carcinogenesis*, 40(2), 324-334 (2019).
- 114. B. Zuo, T. Li, X. Liu, S. Wang, J. Cheng, X. Liu, W. Cui, H. Shi and C. Ling, "Dipeptidyl peptidase 4 inhibitor reduces tumor-associated macrophages and enhances anti-PD-L1-mediated tumor suppression in non-small cell lung cancer", *Clin Transl Oncol*, 25(11), 3188- 3202 (2023).
- 115. J. Yang, S.H. Kim, E.H. Jung, S.A. Kim, K.J. Suh, J.Y. Lee, J.W. Kim, J.W. Kim, J.O. Lee, Y.J. Kim, K.W. Lee, J.H. Kim, S.M. Bang and J.S. Lee, "The effect of metformin or dipeptidyl peptidase 4 inhibitors on clinical outcomes in metastatic non-small cell lung cancer treated with immune checkpoint inhibitors", *Thorac Cancer*, 14(1), 52-60 (2023).
- 116. Z.J. Nie, Y.G. Zhang, Y.H. Chang, Q.Y. Li, Y.L. Zhang, "Exendin-4 inhibits glioma cell migration, invasion and epithelial-tomesenchymal transition through GLP-1R/sirt3 pathway", Biomed Pharmacother 106 1364-1369 (2018).
- 117. S. Kushiyama, M. Yashiro, Y. Yamamoto, T. Sera, A. Sugimoto, S. Nishimura, S. Togano, K. Kuroda, T. Okuno, Y. Miki and M. Ohira, "Dipeptidyl Peptidase-4 from Cancer-associated Fibroblasts Stimulates the Proliferation of Scirrhous-type Gastric Cancer Cells", *Anticancer Res*, 42(1), 501-509 (2022).
- 118. R. Barreira da Silva, M.E. Laird, N. Yatim, L. Fiette, M.A. Ingersoll and M.L. Albert,

"Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy", *Nat Immunol*, 16(8), 850-858 (2015).

- 119. K. Fujiwara, T. Inoue, Y. Henmi, Y. Hirata, Y. Naka, A. Hara, K. Kakimoto, S. Nouda, T. Okada, K. Kawakami, T. Takeuchi, K. Higuchi, "Sitagliptin, a dipeptidyl peptidase-4 inhibitor, suppresses CXCL5 and SDF-1 and does not accelerate intestinal neoplasia formation in Apc(Min/+) mice fed a high-fat diet", *Oncol Lett*, 14(4), 4355-4360 (2017).
- 120. P.I. Liang, B.W. Yeh, W.M. Li, T.C. Chan, I.W. Chang, C.N. Huang, C.C. Li, H.L. Ke, H.C. Yeh, W.J. Wu and C.F. Li, "DPP4/CD26 overexpression in urothelial carcinoma confers an independent prognostic impact and correlates with intrinsic biological aggressiveness", *Oncotarget*, 8(2), 2995-3008 (2017).
- 121. R. Pradhan, O.H.Y. Yu, R.W. Platt and L. Azoulay, "Glucagon like peptide-1 receptor agonists and the risk of skin cancer among patients with type 2 diabetes: Population-based cohort study", *Diabet Med*, 41(4), e15248 (2024).
- 122. V. Pech, K. Abusaada and C. Alemany, "Dipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid Tumor", *Case Rep Endocrinol*, 2015, 952019 (2015).
- 123. H. Wenjing, Y. Shuang, L. Weisong and X. Haipeng, "Exendin-4 does not modify growth or apoptosis of human colon cancer cells", *Endocr Res*, 42(3), 209-218 (2017).
- 124. Z. Yang, Y. Lv, M. Yu, M. Mei, L. Xiang, S. Zhao and R. Li, "GLP-1 receptor agonist-associated tumor adverse events: A real-world study from 2004 to 2021 based on FAERS", *Front Pharmacol* ,13, 925377 (2022).
- 125. J. Wang and C.H. Kim, "Differential Risk of Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists: Analysis of Real-world Databases", *Endocr Res,* 47(1), 18-25 (2022).
- 126. C. Cao, S. Yang and Z. Zhou, "GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis

of randomized controlled trials", *Endocrine*, 66(2), 157-165 (2019).

- 127. Y. Liu, X. Zhang, S. Chai, X. Zhao and L. Ji, "Risk of Malignant Neoplasia with Glucagon-Like Peptide-1 Receptor Agonist Treatment in Patients with Type 2 Diabetes: A Meta-Analysis", *J Diabetes Res*, 2019, 1534365 (2019).
- 128. Y. Noh, S.M. Jeon and S. Shin, "Association between glucose-lowering treatment and cancer metastasis among patients with preexisting type 2 diabetes and incident malignancy", *Int J Cancer*, 144(7), 1530-1539 (2019).
- 129. Y.J. Choi, D.J. Kim and S. Shin, "Incident cancer risk in dipeptidyl peptidase-4 inhibitor-treated patients with type 2 diabetes mellitus", *Cancer Manag Res,* 11 7427-7438 (2019).

نشـرة العـلوم الصيدليــــــة جامعة أسيوط

العلاجات القائمة على الإنكريتين والسرطان: هل هم أعداء أم حلفاء؟ ساندي رائد بطرس ـــ اسماء ابراهيم معتوق ــــ جيهان حسين هيبة*

قسم الأدوية والسموم ، كلية الصيدلة ، جامعة المنيا

العلاقــة بـين السـرطان ومـرض السكري موجـودة ولكنهـا غيـر مفهومــة بالكامـل. تـم اسـتخدام العلاجات المعتمدة على الإنكريتين بشكل متزايد في العقد الماضي للسيطرة على مرض السكرى من النوع ٢ .(T2DM) من المفترض وجود صلة بين مسـار الإنكريتين والسرطان، لكن الجدل في اللجنـة العلمية يتزايد حول ما إذا كانت العلاجات المعتمدة على الإنكريتين لها أثار مفيدة أو ضارة على المرضى الذين يعانون من أمراض خبيثة أو معرضين لخطر الإصابة بالأورام الخبيثة. تلخص هذه المراجعة الأبحاث ما قبل السريرية والسريرية المنشورة التي تناقش العلاجات القائمـة علـي الإنكريتين والسرطان باستثناء سرطان البنكريـاس، وسرطان الغـدة الدرقيـة، وسـرطان القنـوات الصـفراوية، تتفـق البيانــات المنشورة على أن العلاجات المعتمدة على الإنكريتين لها تأثير مفيد أو صفر على خطر الإصابة بـالأورام الخبيثة. فيما يتعلق بسرطان البنكرياس، هناك تقارير عن حالات الإصـابة بسرطان البنكريـاس بعد تلقـى العلاج الدوائي القائم على الإنكريتين، ولكن تـأخر تكوين الأورام أمر مشكوك فيـه. حتـى الآن، اتفقت التحليلات التلويـة علـى عدم ملاحظـة زيـادة فـى الإصـابـة بسر طان البنكريـاس بـين مستخدمي العلاجـات المعتمدة علـى الإنكـريتين. مـا إذا كانـت العلاجـات المعتمـدة علـى الإنكـريتين تزيـد مـن خطـر الإصــابـة بسر طان الغدة الدر قية أمر مثير للجدل، لذلك فمن المستحسن تجنب و صـف منبـهـات مسـتقبلات الببتيد ـ ١ الشبيهة بالجلوكـاجون (GLP-1RAs) للمرضـى الذين يعـانون مـن ارتفـاع خطـر الإصــابـة بسـرطان الغدة الدرقية. على الرغم من الدراسات العديدة المنشورة حـول الإنكر بتين والسر طـان، إلا أنهـا لا تـز ال مجـالا غنيًا لمز يد من البحث.