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The worldwide health care system is significantly threatened by Alzheimer's disease (AD), 

which arises from a combination of conditions leading to neuronal malfunction, memory 

impairment, and cognitive decline.  Hypericum perforatum, often known as St. John's wort, has 

garnered significant attention due to its possible therapeutic advantages in the treatment of 

neurodegenerative diseases. The lack of efficacious treatments for diseases such as Alzheimer's 

and Parkinson's disease is becoming a growing global health issue. This study investigated the 

therapeutic potential of five reported phytochemicals of this plant including hypericin (HP-1), 

biapigenin (HP-2), kaempferol (HP-3), hyperforin (HP-4), hyperocide (HP-5), based on their 

binding affinity with AD-associated proteins namely acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE). The Glide-XP module from Schrödinger was utilized to conduct 

thorough docking investigations, which were then followed by molecular dynamic (MD) 

simulations using IMods. The selected compounds were subjected to docking analysis to 

determine the binding energies of their interactions with the target proteins. Additionally, 

molecular dynamics (MD) simulations were conducted to confirm the stability of the bound 

complexes. The top hits among the five selected phytochemical compounds, HP-2 (-7.461 

kcal/mol) and HP-1 (-7.304 kcal/mol), have the greatest docking scores for the AChE enzyme. 

Similarly, in case of BChE enzyme, the phytochemicals HP-5 (-7.991 kcal/mol) and HP-3 (-

7.849 kcal/mol) have substantial binding affinities. Through the different online tools including 

swissADME, pkSCM, stoptox, molinspiration, and swiss target prediction analysis, the selected 

compounds’ pharmacokinetic characteristics, drug likeness, toxicity, bioactivity score 

prediction, and enzyme target prediction were also examined.  

Keywords: Hypericum perforatum; phytochemicals; neurological disorders; fingerprinting 

analysis; docking; MD simulations 

 

INTRODUCTION 

 

The utilization of natural products as 

therapeutic agents for health management and 

treatment of common disorders has been a 

longstanding practice due to their inherent 

health-promoting capabilities and the presence 

of bioactive components
1
. I As per the World 

Health Organization, a significant proportion of 

the global population, approximately 80%, 

primarily relies on conventional and herbal 

drugs. In numerous countries, the overall 

consumption of medicinal substances is 

estimated to range from 30% to 50%, primarily 

derived from the preparation of conventional 

medicine
1.2

. In Germany, it has been shown that 

almost 90% of the population has employed 

traditional natural therapies for various health 

conditions. Therefore, the utilization of 

traditional medicine is widespread in both 

industrialized and developing nations
3
. The 

global market for the utilization of traditional 

medicine is experiencing significant growth. 
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The annual expenditure on herbal medicine 

exceeds $60 billion and is steadily rising
3
.  

Alzheimer's disease (AD) is a 

degenerative neurological condition that is the 

predominant etiology of dementia
4
, It impacts a 

minimum of 27 million individuals and 

constitutes 60 to 70% of all instances of 

dementia
5
. he condition is classified as 

progressive due to the gradual deterioration of 

symptoms over time
6
. According to Abraham, 

Maharifa, et al. (2022), throughout its most 

extreme stages, this disease results in the 

progressive decline of cognitive function, brain 

cells, and memory, rendering individuals 

entirely reliant on external support for their 

survival
7
. Despite almost a century of research 

and disease identification, a comprehensive 

cure for this disorder has yet to be developed
8
.  

Throughout history, H. perforatum, commonly 

referred to as St. John's wort, has been 

employed as a conventional herbal remedy, 

specifically for the management of various 

afflictions such as inflammation and mood 

disorders. Nevertheless, the scientific 

community has just started to recognize the 

potential neuroprotective properties of this 

substance, specifically in relation to 

neurodegenerative diseases
9,10

. A 

comprehensive review by Suryawanshi et al. 

(2024) delves into the pharmacognosy and 

preclinical studies of H. perforatum, 

highlighting its putative molecular mechanisms 

and clinical relevance in neurodegenerative 

disorders such as AD
9
. The computer-aided in 

silico technique has been widely employed in 

the initial stages of drug research with the aim 

of searching for possible treatments. The 

investigation of the structures and functions of 

biological targets is a fundamental aspect of 

computer-aided rational drug design, which 

aims to identify novel treatments
11

. The 

technique described by Alom, Bonna et al. 

(2023) is a valuable approach for forecasting 

possible drug candidates for various diseases in 

a manner that is both cost-effective and time-

efficient, while also reducing errors during the 

final stages
12

. The present investigation centres 

on examining the specific efficacy of 

phytochemicals derived from H. perforatum 

against the AChE and BChE proteins through 

the utilization of ADMET, molecular docking, 

and molecular simulation analysis techniques. 

This research endeavor aims to elucidate the 

primary phytochemical responsible for the 

therapeutic properties of H. perforatum, as well 

as determine if the neuroprotective activity of 

H. perforatum is attributed to a singular 

phytochemical or a synergistic effect resulting 

from the combined action of multiple 

phytochemicals. 

 

MATERIAL AND METHODS 

 

Protein Retrieval and Preparation (protein 

model preparation) 

The co-crystal structures of 

acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE) were obtained 

from the RCSB Protein Data Bank protein 

structures with PDB ID’s 4EY6 and 7AIY, 

respectively. Before the docking process, 

protein structures were meticulously prepared, 

involving the exclusion of solvent molecules, 

correction of absent atoms, and geometric 

optimization, to preserve the structural integrity 

and enhance the reliability of the protein 

models
13

.  

 

Ligand Retrieval and Preparation (library 

preparation) 

A total of five bioactive compounds 

including hypericin (HP-1), biapigenin (HP-2), 

kaempferol (HP-3), hyperforin (HP-4), 

hyperocide (HP-5) as reported from the plant
9
 

were selected as ligands. 3D structures of these 

compounds were obtained from PubChem 

database (https://pubchem.ncbi.nlm.nih.gov/) 

in sdf format. The structures of ligands were 

prepared using the Open Babel
33

 soft- ware that 

is included as a default option in the PyRx.  

 

Molecular Docking 

To anticipate the binding affinity between 

a ligand and its target protein, molecular 

docking uses the docking score to evaluate the 

ligand's active conformation with the protein. 

Molecular docking is frequently employed to 

anticipate how chemicals will bind to proteins. 

In particular, flexible docking helps 

enhance the specificity of ligand binding inside 

an active site of a protein. Before the docking 

process began, the proteins were cleaned of any 

co-crystallized water and hetero atoms. 

Molecular docking was carried out by Glide-

XP module from Schrödinger to explore all 

possible orientations, conformations, and 
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binding affinities for the ligands with AChE 

and BChE active site.  

The selected compounds, including 

hypericin (HP-1), biapigenin (HP-2), 

kaempferol (HP-3), hyperforin (HP-4), 

hyperocide (HP-5),  were subjected to flexible 

docking into the active site of AChE and BChE 

employing the Glide-XP module from 

Schrödinger
14

 , in accordance with established 

protocols
15-17

.  The receptor grid was 

constructed using the preprocessed protein, 

applying the OPLS 2005 force field. 

Adjustments to the van der Waals (vdW) radii 

of protein atoms were made using a scaling 

factor of 1.0, and a charge cutoff of 0.25 was 

implemented to assess polarity. The 

dimensions of the receptor grid box were 

defined as ≤ 20Å in each spatial direction (x, y, 

and z), centering the box around the target 

ligands to ensure ample space in the binding 

pocket for accommodating any ligand
26

. A 

cubic docking grid, positioned near the hinge 

residue M769 and tailored to enclose ligands 

up to ≤ 20Å, was generated. Glide's extra 

precision (XP) scoring mechanism was 

employed, allowing for complete ligand 

flexibility during docking. The final energy 

assessment was conducted using GlideScore, 

yielding the most favorable pose for each of the 

five compounds
18

. Remarkably, the docking 

simulations frequently converged, indicating 

the lowest energy docked complex for the most 

similar conformations. 

 

Structural Interaction Fingerprinting (SIFt) 

analysis 

SIFt represents an innovative approach for 

modeling and assessing three-dimensional 

interactions between proteins and ligands. 

Through SIFt approach, a binary digit 

interaction fingerprint is generated, translating 

the three-dimensional structural binding 

characteristics of a ligand-protein complex. 

Each fingerprint encapsulates the "structural 

interaction pattern" of the complex, facilitating 

the organization, analysis, and presentation of 

extensive data within ligand-receptor 

complexes, thereby enabling efficient database 

mining.
19

. SIFt panel in Schrodinger suite 

2020-3 was used to generate the interaction 

fingerprint of five docking complexes of the 

selected phytochemicals. The input files chosen 

were the receptor grid and ligands. After 

generating the fingerprint, the outcome can be 

represented in an Excel spreadsheet, which 

emphasizes the residues and interaction types, 

such as hydrophobic, H-bond donor, and H-

bond acceptor features, that have the most 

impact on the binding process. The types of 

interaction exhibited by the residues were 

denoted using corresponding colors, while the 

presence and lack of interaction were 

represented by the numerals 1 and 0, 

respectively
20

. More details for generating SIFt 

model can be found in previously published 

research
18.21

. 

 

Pharmacokinetics evaluation 

ADME, pkCSM and Toxicity Analysis 

Adsorption, Distribution, Metabolism, 

Excretion, and Toxicity are the acronyms used 

to denote scientific concepts. The document 

encompasses the pharmacokinetic 

characteristics of a substance, namely a 

therapeutic molecule, and holds considerable 

importance in the assessment of its 

pharmacodynamic properties. The SWISS 

ADMET website was used to identify the 

attributes of the active compounds, including 

their intestinal absorption, distribution, 

metabolism, and excretion properties, 

considering all the compounds that were 

provisionally identified
22

. The pkCSM-

pharmacokinetics web tool, which is readily 

available, represents an innovative approach to 

forecasting and enhancing the ADME/Tox 

characteristics of small molecules. This tool 

utilizes graph-based signatures and 

experimental data as its foundation. The 

molecular structures of the compounds that 

were tentatively identified, as reported in 

Table 1, were incorporated into the 

ADME/Tox web tools SwissADME and 

pkCSM-pharmacokinetics using the simplified 

molecular-input line-entry specification 

(SMILES) nomenclature. The ADME/Tox 

attributes that were deemed significant by the 

web tools were chosen to represent the 

ADME/Tox profile, as outlined by Pires, 

Blundell et al. (2015)
23

. 

The StopTox server was utilized for doing 

toxicity assessments
24

. The StopTox server 

employs a collection of quantitative structure-

activity relationship (QSAR) models to assess 

the toxicity of compounds across different 

toxicity endpoints, such as acute inhalation 
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toxicity, acute oral toxicity, eye irritation and 

corrosion, and skin sensitization. This 

evaluation is conducted by compiling, curating, 

and integrating the most extensive publicly 

accessible datasets. 

 

Bioactivity Score and drug target class 

prediction 

A drug is intended to form a chemical 

bond with a specific biological target. 

Enzymes, ion channels, and receptors are 

examples of biological targets. The assessment 

of the bioactivity of phytocompounds can be 

conducted by determining the activity score of 

various biomarkers, including GPCR ligand, 

ion channel modulator, nuclear receptor ligand, 

kinase inhibitor, protease inhibitor, and enzyme 

inhibitor. The molinspiration chemoinformatics 

software was utilized to verify all the 

parameters
31

. The miscreen engine of the 

Molinspiration tool initially examines a 

training dataset consisting of active structures. 

of many instances, even a solitary active 

molecule is deemed adequate for constructing a 

functional model. Subsequently, the engine use 

advanced Bayesian statistics to compare this 

dataset with inactive molecules. The training 

process only requires the SMILES or SDF 

structures of active phytocompounds, without 

the need for information regarding the active 

site or binding mechanism
26

. Organic 

molecules have a probability of being active if 

their bioactivity score is greater than 0, 

moderately active if it falls between 5.0 and 

0.0, and inert if it falls below 5.0
32

. The 

prediction of drug target class and structurally 

related analogs. The researchers employed the 

Swiss Target Prediction service to forecast 

probable macromolecular targets for the most 

promising candidates, as described by Daina, 

Michielin et al. (2019)
25

. The server employs a 

collection of 376,342 bioactive compounds that 

have been found on around 3068 proteins, 

utilizing both 2D and 3D similarity as the basis 

for comparison. 
 

 

Table 1: Chemical structures (2d and 3D), SMILES, and docking scores of the selected phytochemicals of 

Hypericum perforatum against the tested enzymes. 
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DFT studies (MESP/HOMO/LUMO analysis) 

The DFT calculations were performed 

with slight modification using the previously 

described protocol
26

. Utilizing the Gaussian 06 

package (Rev.E.01) with the default 

configuration, all calculations in the SVP basis 

set utilized the B3LYP function. Using this 

theory, the electronic structure of atoms and 

molecules can be effectively calculated. The 

present investigation will ascertain the 

optimized geometric parameters, molecular 

electrostatic potential (MEP), frontier 

molecular orbital (FMO), and global and local 

reactivity descriptors. The checks were 

examined utilizing Guass View 6. 

 

 Molecular Dynamics (MD) simulations 

The molecular dynamic analysis was 

performed on the selected docking complex 

with the lowest energy value and best-posed 

conformation, utilizing the docking data. 

Molecular dynamics (MD) aims to numerically 

simulate the condensed phases of a molecular 

system to understand, predict, and compute its 

parameters
27

. The stability of the target was 

determined using molecular dynamics (MD) 

simulations, employing the most optimal 

natural product molecule. The MD simulations 

were conducted using the iMod server 

(iMODS) available at https://imods.iqfr.csic.es. 

The iMod server offers a user-friendly interface 

for the enhanced normal mode analysis (NMA) 

technique in inner coordinates. All prominent 

web browsers, along with modern mobile 

devices, exhibit a high level of responsiveness 

and spontaneity in their online interface. Users 

can employ molecular dynamics (MD) or non-

molecular dynamics (NMA) to simulate 

potential paths between two conformations. 

They can then actively investigate the resulting 

structures, trajectories, animations, and even 

huge macromolecules, all inside a three-

dimensional (3D) environment.
27

. 

 

RESULTS AND DISCUSSION 

 

Results 

Molecular docking analysis 

The generation of a diverse range of 

phytochemicals by plants is widely recognized 

for their pharmacological significance and 

potential as therapeutic agents for the treatment 

and prevention of many ailments
28

. Research 

interests have stimulated the exploration of 

some commonly utilized therapeutic plants. 

The medicinal plants provide a plethora of 

bioactive chemicals, rendering them suitable 

for the production of functional meals and 

pharmaceuticals. Extensive in-silico 

approaches have been used to predict the 

interaction between key phytochemicals and 

target proteins. To determine the affinities 

between lead-like compounds and the target 

protein, molecular docking is considered the 

most appropriate approach. This study employs 

docking of  five selected phytochemical com-

pounds, retrieved from one of the important 

medicinal plant traditionally used against 

different neurological problems, against the 

enzymes AChE (PDB ID: 4EY6), and BChE 

(PDB ID: 7AIY)) using lide-XP module from 

Schrödinger
14

 , in accordance with established 

protocols
15-17

. Multiple investigations have 

documented the inhibitory interaction of 

natural phytochemical compounds derived 

from different sources with these proteins. 

Nevertheless, there is a dearth of research 

investigating the possible utilization of 

prevalent phytochemicals derived from this 

particular plant for the purpose of managing 

neurological illnesses. The chemical structures 

of bioactive hits selected for molecular docking 

analysis are shown in Fig. 1 B, while the 

chemical structures of standard compounds 

Eserine (Fig. 1 A), as well as the Binding 

conformation of selected hits and standard 

compounds in their corresponding molecular 

targets is presented in Fig. 1 C. From the 

results of docking in this study, binding free 

energies were observed from lowest to highest 

values. Out of the five selected phytochemical 

compounds, the top hits, namely HP-2 (-7.461 

kcal/mol), HP-1 (-7.304 kcal/mol) have the 

highest docking scores for the AChE enzyme. 

Likewise, in case of BChE enzyme, the 

phytochemicals HP-5 (-7.991 kcal/mol) and 

HP-3 (-7.849 kcal/mol) we having strong 

binding affinities (Table 1). To investigate 

variations in docking scores resulting from 

diverse interaction patterns, we captured and 

visually portrayed the optimal docking 

conformations for each compound (HP-1 to 

HP-5). Notably, top-ranked ligands, along with 

their interactions with proteins and 

corresponding standard inhibitors, share a 

common binding cavity. The selection of the 



Adel Alghamdi. 

282 

best compound for each enzyme is based on 

both the highest docking scores and their 

interactions, specifically the number of 

hydrogen bonds, with residues within the 

binding cavity (Fig. 2 and Fig. 3). In the 

AChE-HP1 bonded system, the residues within 

the binding cavity include E73, D72, V71, 

Q74, Y70, Y334, F331, Y121, I287, F290, 

F288, R289, S286, W279, and L282 (Fig. 2). 

Likewise, for the binding cavity of AChE-HP2, 

complex is constituted by residues including 

L358, R289, F290, I287, F284, D285, L282, 

N280, W279, E73, Q74, D72, Y334, F330, 

A336, F331, and G335. Similarly, as indicated 

in the Fig. 6, the amino acid residues of the 

BChE-HP3 complex were noted to have S287, 

L286, W231, V288, Q119, T120, G116, W82, 

G115, E197, 1442, G439, H438, A199, S198, 

F329, and F398. For the BChE-HP5 complex, 

there were S198, E197, H438, G439, M437, 

Y440, W430, W82, Y332, P285, Q119, S287, 

V288, W231, A199, L286, S198, and E197 

amino acid residues (Fig. 3).  In summary, our 

research findings, derived from docking 

experiments, reveal that natural phytochemical 

compounds derived from the chosen plant 

exhibit robust binding affinity towards the 

targeted proteins at the inhibitory active 

binding region. 

 

 

 
 

Fig. 1:  Chemical structures of bioactive hits selected for molecular docking analysis. (A) Chemical 

structures of standard compounds Eserine (ACB). (B) 2D-structural representation of selected 

bioactive molecules. (C) Binding conformation of selected hits and standard compounds in 

their corresponding molecular targets.   
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Fig. 2: Docking generated complexes (2D, 3D, and superposed docking pose images) of AChE 

enzymes bonded to their respective phytocompound with lowest docking scores. 

 

 
 

Fig. 3: Docking generated complexes (2D, 3D, and superposed docking pose images) of BChE 

enzymes bonded to their respective phytocompound with lowest docking scores. 

 

Structural Interaction Fingerprinting (SIFt) 

parameters 

Assessing the docking orientations of 

potential new ligands and comparing them to 

interactions in known protein-ligand 

complexes, interaction fingerprints offer an 

efficient method for creating customized 

scoring systems designed specifically for a 

particular protein of interest.
29

. By considering 

only the interactions and ignoring the 

molecular structure, this approach is capable of 

identifying new ligands that possess similar 

interactions but unique core structures. This 

procedure, which is called "scaffold hopping," 

is vital to medicinal chemistry
30

. Several 

interaction fingerprints have been developed 

and successfully employed in the preceding 

literature to elucidate docking postures
31

. SIFt, 

or structural interaction fingerprint, is among 

the earliest and most widely recognized 

fingerprints. A binary fingerprint is generated 

for each amino acid, consisting of a seven-bit 

vector. This fingerprint delineates the 

interaction pattern between the residue and the 

ligand. It specifies whether the residue acts as a 

hydrogen bond donor or acceptor, the 

interaction type (any contact, hydrophobic, or 

aromatic), and whether either the main chain or 

side chain atoms (or both) are involved
32

. 

The number of hydrogen bond donor, 

acceptor, and hydrophobic interactions 

between ligands and the AChE and BChE 
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receptor is shown in the Fig. 4 and 5, 

respectively.  For the AChE enzyme and ligand 

complexes, it was noted that the amino acid 

residues including Q74 and L282 were 

invloved in hydrogen bon acceptor interaction, 

while the residues Y121, and N280 were noted 

to have the hydrogen bon donor interacction 

(Fig. 4). Similary, in the case of fingerprinting 

for the BChE enzyme as presented in the Fig. 

5, the hydrogen bond donor residues observed 

to interact the most with the ligands were S198, 

Q197, D70, N83, and F398. Our findings 

implied that S198 is a crucial residue that 

might be the subject of additional research 

examining the relationship between structure 

and function.  Hydrophobic interactions were 

observed with the following residues: N68, 

G78, G115, G116, Y128, S287, V288, R332, 

M437, and Y440. It is interesting to note that 

the compounds suggested as potential 

candidates from this study were seen to interact 

with experimentally determined active site 

residues of AChE and BChE proteins. This 

interaction suggests the compounds may have a 

high binding affinity.  

 

 

Fig. 4: Structural interaction fingerprinting (Sift) of the selected phytochemicals of Hypericum 

perforatum with AChE enzyme. 

 

 
Fig. 5: Structural interaction fingerprinting (Sift) of the selected phytochemicals of Hypericum 

perforatum with BChE enzyme. 
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SWISS ADME and pkCSM Pharmacokinetic 

Parameters 

Pharmacokinetic properties of the selected 

phytochemicals from H. perforatum were 

predicted using the pkCSM pharmacokinetics 

predictive modeling. Table 2 lists the 

properties related to absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) 

for each phytochemical (HP-1 through HP-5). 

Likewise, the SwissADME molecular 

properties of the selected phytochemicals of H. 

perforatum are depicted as heatmap in Fig. 6, 

and the radar plots of the selected 

phytochemicals of H. perforatum obtained 

from Swiss ADME online tool are shown in 

Fig. 7. The Table 2 indicates a range of water 

solubility values, with all compounds showing 

relatively low solubility (HP-1 and HP-2: -

2.892 logS, HP-3: -3.04 logS, HP-4: -3.893 

logS, HP-5: -2.925 logS). These solubility 

values suggest limited bioavailability; however, 

the Caco-2 permeability data show a range of 

intestinal absorptivity. HP-4 exhibits the 

highest Caco-2 permeability (1.055), indicating 

potential for good intestinal absorption, which 

is supported by a high predicted human 

intestinal absorption rate of 98.386%. 

Conversely, HP-5 shows the lowest intestinal 

absorption (47.999%) which could limit its oral 

bioavailability. The skin permeability values 

are relatively consistent among the compounds, 

suggesting similar potential for transdermal 

delivery. P-glycoprotein substrate and 

inhibition profiles vary, with HP-1, HP-2, and 

HP-5 identified as substrates and HP-1 also 

acting as an inhibitor. This could have 

implications for drug-drug interactions and 

absorption profiles. Distribution properties, 

such as the volume of distribution (VDss) and 

blood-brain barrier (BBB) permeability, reveal 

the likelihood of each compound to distribute 

into the human body and cross into the central 

nervous system (CNS). HP-3 and HP-5 show 

higher VDss values (1.274 and 1.846, 

respectively), suggesting a broader distribution. 

However, BBB permeability is highest for HP-

4 (-0.237), indicating a greater propensity for 

CNS access, which correlates with its higher 

CNS permeability score (-1.304). Metabolism 

data suggest none of the compounds are 

substrates for CYP2D6, which is beneficial for 

avoiding one common pathway that could lead 

to drug-drug interactions. HP-3 is the only 

compound predicted to inhibit CYP1A2, which 

may necessitate further investigation to assess 

the clinical significance of this interaction. The 

excretion parameter, total clearance, provides 

insight into the rate at which these compounds 

are removed from the body, with HP-4 showing 

the highest clearance (0.664 mL/min/kg) and 

HP-1 the lowest (0.004 mL/min/kg). Toxicity 

predictions are critical for early safety 

assessments. All compounds were predicted to 

be non-toxic in the AMES test and showed no 

hepatotoxicity or skin sensitization. The hERG 

II inhibition by HP-1, HP-2, and HP-5 is a 

concern as it may indicate potential for cardiac 

toxicity, and these compounds would require 

careful consideration and further validation in 

drug development. Maximal tolerated dose 

(MTD) predictions and acute and chronic oral 

toxicity data suggest a range of tolerable 

dosages in humans and rats, with HP-4 

showing the highest MTD in humans (0.801 

mg/kg) and HP-5 the highest LOAEL in rats 

(4.417 mg/kg). The minnow toxicity data, 

especially the high value for HP-5 (8.061), 

raise questions about environmental impact and 

necessitate further ecotoxicological evaluation. 

 

 
 

Fig. 6: SwissADME molecular properties of the selected phytochemicals of Hypericum perforatum. 
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Fig. 7: Radar plots of the selected phytochemicals of Hypericum perforatum obtained form Swiss 

ADME online tool. 

 
Table 2: pkCSM pharmacokinetic parameters of the selected phytochemicals of Hypericum perforatum. 

Pharmacokinetic Properties Selected Phytochemicals 

Properties Model Name HP-1 HP-2 HP-3 HP-4 HP-5 

Absorption 

Water solubility -2.892 -2.892 -3.04 -3.893 -2.925 

Caco2 permeability -0.594 -0.111 0.032 1.055 0.242 

Intestinal absorption 

(human) 
100 90.723 74.29 98.386 47.999 

Skin Permeability -2.735 -2.735 -2.735 -2.715 -2.735 

P-glycoprotein 

substrate 
Yes Yes Yes No Yes 

P-glycoprotein I 

inhibitor 
Yes No No Yes No 

P-glycoprotein II 

inhibitor 
Yes Yes No Yes No 

Distribution 

VDss (human) -0.734 -1.132 1.274 -0.64 1.846 

Fraction unbound 

(human) 
0.375 0.26 0.178 0 0.228 

BBB permeability -1.561 -1.659 -0.939 -0.237 -1.688 

CNS permeability -3.443 -3.283 -2.228 -1.304 -4.093 

Metabolism 

CYP2D6 substrate No No No No No 

CYP3A4 substrate Yes Yes No Yes No 

CYP1A2 inhibitor No No Yes No No 

CYP2C19 inhibitor No No No No No 

CYP2C9 inhibitor No No No No No 

CYP2D6 inhibitor No No No No No 

CYP3A4 inhibitor No No No No No 

Excretion 

Total Clearance 0.004 0.421 0.477 0.664 0.394 

Renal OCT2 

substrate 
No No No No No 

Toxicity 

AMES toxicity No No No No No 

Max. tolerated dose 

(human) 
0.438 0.438 0.531 0.801 0.569 

hERG I inhibitor No No No No No 

hERG II inhibitor Yes Yes No No Yes 

Oral Rat Acute 

Toxicity (LD50) 
2.482 2.5 2.449 2.043 2.541 

Oral Rat Chronic 

Toxicity (LOAEL) 
2.421 2.918 2.505 2.299 4.417 

Hepatotoxicity No No No No No 

Skin Sensitization No No No No No 

T.Pyriformis toxicity 0.285 0.285 0.312 0.286 0.285 

Minnow toxicity 2.015 3.538 2.885 -1.887 8.061 
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StopTox Toxicity Assessment 

The toxicity profiles of the selected H. 

perforatum phytochemicals were assessed 

using the StopTox toxicity prediction tool, with 

results summarized in Table 3. This 

assessment covers a range of toxicity 

endpoints, including acute inhalation, oral, 

dermal, eye irritation and corrosion, skin 

sensitization, and skin irritation and corrosion. 

The StopTox toxicity parameters (Table 3) 

indicate a favorable safety profile for HP1, 

with no toxicity observed across most 

endpoints except for eye irritation and 

corrosion. However, HP2 and HP3 exhibit 

acute dermal toxicity, with HP2 also being a 

skin sensitizer, which raises concerns regarding 

their safety in topical applications. HP4 stands 

out as a skin sensitizer with a positive 

indication of skin irritation and corrosion, 

suggesting a potential for adverse dermal 

reactions. HP5, like HP1, appears to be largely 

non-toxic except for acute dermal toxicity. 

These findings highlight the necessity for 

cautious formulation development, especially 

for topical applications, and underscore the 

importance of conducting in-depth in vivo 

toxicity studies to confirm these predictions 

and evaluate the risk of adverse effects in 

humans. 

 

Bioactivity Score Evaluation and drug target 

prediction 

The bioactivity scores of the 

phytochemicals were evaluated using the 

online tool Molinspiration, as shown in Table 

4. These scores predict the potential of the 

compounds to act as bioactive ligands for 

various drug targets, including G protein-

coupled receptors (GPCRs), ion channels, 

kinases, nuclear receptors, proteases, and 

enzymes. As per the bioactivity scores (Table 

4), HP1 shows promise as a nuclear receptor 

ligand (score: 0.31) and enzyme inhibitor 

(score: 0.30), suggesting potential utility in 

modulating gene expression and enzyme 

activity. HP2, while demonstrating modest 

scores, may still possess some activity as a 

kinase inhibitor (score: 0.12) and GPCR ligand 

(score: 0.01). HP3 presents as a kinase 

inhibitor (score: 0.21) and nuclear receptor 

ligand (score: 0.32), indicating a capacity for 

signaling modulation and regulation of 

transcriptional activities. HP4 has a notable 

score as a nuclear receptor ligand (score: 0.57), 

which could be significant for therapeutic 

applications involving hormone receptors. 

Finally, HP5 exhibits a strong score as an 

enzyme inhibitor (score: 0.42), suggesting it 

might be an effective modulator of enzymatic 

pathways. The varying bioactivity scores of 

these phytochemicals underscore the chemical 

diversity within H. perforatum and their 

potential as lead compounds for drug 

discovery. These preliminary in silico 

assessments can guide the prioritization of 

compounds for further experimental validation, 

thereby streamlining the drug development 

process. Similarly, the prediction of drug target 

classes of the selected phytochemicals of H. 

perforatum is presented in Fig. 8. 

 

Table 3: StopTox toxicity parameters of the selected phytochemicals of Hypericum perforatum 

Ligands 

Acute 

Inhalation 

Toxicity 

Acute 

Oral 

Toxicity 

Acute 

Dermal 

Toxicity 

Eye Irritation 

and Corrosion 

Skin 

Sensitization 

Skin 

Irritation 

and 

Corrosion 

HP1 No No No Toxic 
Non 

sensitizer 
Negative 

HP2 No No Toxic Toxic Sensitizer Negative 

HP3 No No Toxic No Sensitizer Negative 

HP4 No No No No Sensitizer Positive 

HP5 No No Toxic No 
Non 

sensitizer 
Negative 
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Table 4: Bioactivity score values of the selected phytochemicals of Hypericum perforatum assessed by 

online tool Molinspiration. 

 

 

 

 

 

Fig. 8: Prediction of drug target classes of the selected phytochemicals of Hypericum perforatum. 

 
DFT Analysis 

Table 5 presents the Density Functional 

Theory (DFT) computational analysis for a 

series of phytochemicals isolated from H. 

perforatum. It lists numerical values for several 

electronic parameters, which are pivotal for 

understanding the reactivity and interaction 

potential of these compounds with biological 

targets. The optimized structures of the 

selected phytochemicals of H. perforatum are 

shown in Fig. 9.  Similarly, the MESP (ESP 

and HOMO–LUMO structures with energy 

gaps) and Molecular Orbital Energies analysis 

of the selected phytochemicals of H. 

perforatum in aqueous and gas phase is 

depicted in the Fig. 10. The DFT parameters 

include dipole moment, frontier molecular 

orbital energies (HOMO and LUMO), energy 

gap, ionization potential, electron affinity, 

electronegativity, electrochemical potential, 

hardness, softness, and electrophilicity index 

are listed in Table 5. The results delineate a 

wide range of electronic characteristics. HP1 

displays a notably high dipole moment (13.875 

Debye), suggesting substantial polarity which 

may affect interactions with polar 

environments. The HOMO energy level of HP1 

is -0.1885 a.u., and the LUMO is -0.102 a.u., 

resulting in an energy gap (ΔE_Gap) of 2.3516 

eV. This compound also has a high ionization 

potential (5.1283 eV) and electron affinity 

(2.7767 eV), indicating its potential stability 

and reactivity. The electronegativity (χ) for 

HP1 is calculated at 3.9525 eV, with a 

corresponding electrochemical potential (μ) of 

-3.9525 eV. Its hardness (η) is 2.3516 eV, and 

Phytocompound

s 

Parameters of Bioactivity Score 

GPCR 

ligand 

Ion 

channel 

Modulato

r 

Kinase 

Inhibitor 

Nuclear 

Receptor 

ligand 

Protease 

Inhibitor 

Enzyme 

Inhibito

r 

HP-1 0.16 -0.04 -0.02 0.31 0.03 0.30 

HP-2 0.01 -0.29 0.12 0.14 -0.02 0.14 

HP-3 -0.10 -0.21 0.21 0.32 -0.27 0.26 

HP-4 -0.10 -0.20 -0.44 0.57 -0.01 0.25 

HP-5 0.06 -0.04 0.13 0.20 -0.06 0.42 
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softness (S) is 0.4252 eV^(-1), while the 

electrophilicity index (ω) stands at 3.3215 eV. 

HP2, with a lower dipole moment of 12.352 

Debye compared to HP1, exhibits a HOMO 

energy of -0.2094 a.u. and a LUMO energy of -

0.072 a.u. It has a wider energy gap of 3.7367 

eV, potentially indicating greater stability. The 

ionization potential for HP2 is slightly lower 

than that of HP1 at 5.6967 eV, and it has an 

electron affinity of 1.96 eV. Its 

electronegativity value is 3.8284 eV, the 

electrochemical potential is -3.8284 eV, and it 

is characterized by a hardness of 3.7367 eV, 

softness of 0.2676 eV^(-1), and an 

electrophilicity index of 1.9612 eV. HP3 shows 

a dipole moment of 9.4844 Debye and has 

HOMO and LUMO values of -0.2058 a.u. and -

0.0573 a.u., respectively. It has an energy gap 

of 4.0412 eV, an ionization potential of 5.6007 

eV, and an electron affinity of 1.5595 eV. The 

electronegativity is 3.5801 eV, electrochemical 

potential is -3.5801 eV, hardness is 4.0412 eV, 

softness is 0.2475 eV^(-1), and electrophilicity 

index is 1.5858 eV. The compound HP4, with a 

dipole moment of 7.3363 Debye, HOMO at -

0.2218 a.u., and LUMO at -0.0527 a.u., shows 

an energy gap of 4.6004 eV. This suggests a 

potentially lower reactivity profile, supported 

by an ionization potential of 6.0355 eV, 

electron affinity of 1.4351 eV, 

electronegativity of 3.7353 eV, electrochemical 

potential of -3.7353 eV, hardness of 4.6004 eV, 

softness of 0.2174 eV^(-1), and an 

electrophilicity index of 1.5165 eV. Lastly, 

HP5 has a dipole moment of 10.526 Debye 

with HOMO and LUMO levels at -0.2093 a.u. 

and -0.0596 a.u., respectively, and an energy 

gap of 4.0735 eV. Its ionization potential is 

5.6959 eV, electron affinity is 1.6223 eV, 

electronegativity is 3.6591 eV, electrochemical 

potential is -3.6591 eV, hardness is 4.0735 eV, 

softness is 0.2455 eV^(-1), and it has an 

electrophilicity index of 1.  

 

Table 5: DFT and Quantum chemical parameters of the selected phytochemicals of Hypericum 

perforatum. 

 
 

 
Fig. 9: Optimized structures of the selected phytochemicals of Hypericum perforatum. 
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Fig. 10: MESP (ESP and HOMO–LUMO structures with energy gaps) and Molecular Orbital Energies 

analysis of the selected phytochemicals of Hypericum perforatum in aqueous and gas phase. 

 
MD simulation result analysis 

HP-2 and HP-5 were selected as the 

primary targets for AChE and BChE, 

respectively, based on their exceptional 

docking scores and subsequent participation in 

a molecular dynamics simulation study. 

Molecular dynamics (MD) simulations were 

conducted in order to assess the stability of the 

protein-ligand complex. The study assessed the 

alterations in protein structure induced by 

ligands. The stability and mobility of the 

docked complexes were evaluated by molecular 

dynamics (MD) simulations conducted on the 

iMod server. The study examined the sluggish 

behavior of the docked complexes and 

demonstrated their significant conformational 

changes using NMA
27

. The B-factor, 

sometimes referred to as main-chain 

deformability, quantifies the capacity of 

molecules to undergo twisting at individual 

residues (Fig. 11 and 12 depict the B-factor 

graph). The B-factor graphs present a 

comparison between the NMA and PDB 

domains of the complexes. The covariance 

matrices of the 3S7S–C1 complex demonstrate 

the correlation among the residues within the 

complex. In the matrix, the white hue signifies 

motion that is not associated, whereas the red 

color indicates a strong correlation between 

residues. Furthermore, the hue blue 

demonstrates anticorrelations. The system's 

complexity increases as correlation increases. 

The elastic maps of the docked proteins depict 

the interatomic interactions, with the deeper 

gray areas indicating regions of higher stiffness 

(Fig. 11 and Fig. 12 (E, F)). These Figures 

represents critical outputs from molecular 

dynamics simulations that analyze the 

structural dynamics of the AChE-HP-2 and 

BChE-HP-5 complexes. The deformability 

graph (A) indicates which parts of the protein 

may experience structural changes upon ligand 

binding, reflecting regions of potential 

flexibility or structural constraint. The B-factor 

plot (B) parallels experimental temperature 

factors, providing insights into regions of the 

molecule that are more dynamically active in 

the simulation. Variance (C) quantifies the 

extent of fluctuation in the atomic positions, 

suggesting how binding affects the structural 

integrity of the complex. Eigenvalues (D) are a 

statistical measure of the movement's 

magnitude within the protein-ligand complex, 

with lower values indicating larger, more 

significant motions that could be critical for the 

function or inhibition of AChE by the ligand. 

The elastic network model (E) visualizes the 

inter-residue connections, which are crucial for 

maintaining the protein's 3D structure upon 

ligand interaction, while the covariance matrix 

(F) provides a deeper understanding of the 

correlated motions between different parts of 

the complex, important for understanding 

allosteric effects or conformational changes 

upon ligand binding. These results collectively 

offer a comprehensive view of the dynamic 

behavior of the complex and are essential for 

elucidating the molecular basis of the 

inhibitor's action. 

 



291 

 

Fig. 11: Outputs of MD simulations through iMODS for AChE-HP2 complex: (A) deformability; (B) 

B-factor plot; (C) variance plot; (D) eigenvalue; (E) elastic network model; (F) covariance. 

 

 

Fig. 12: Outputs of MD simulations through iMODS for BChE-HP5 complex: (A) deformability; (B) 

B-factor plot; (C) variance plot; (D) eigenvalue; (E) elastic network model; (F) covariance. 

 

Conclusion 

The current extensive study concludes 

four phytochemicals, namely, hypericin (HP-1), 

biapigenin (HP-2), kaempferol (HP-3), 

hyperforin (HP-4), hyperocide (HP-5) as 

potential inhibitors against the AChE and 

BChE enzymes. The findings of the combined 

molecular docking and molecular dynamics 

(MD) simulation investigation indicate that the 

bioactive compounds exhibit a very stable 

complex with the targeted proteins, 

demonstrating superior binding affinities 

compared to other chemicals obtained from 

sesame. Furthermore, the possible inhibitors 

that have been suggested also satisfy the 

requirements of drug similarity as determined 
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by Lipinski's rule of five and ADME 

characteristics. Overall, this comprehensive 

analysis elucidates the complex phytochemical 

landscape of H. perforatum, highlighting its 

potential neuro-pharmacological benefits. The 

favorable pharmacokinetics and safety profiles, 

coupled with promising interaction dynamics 

with key enzymes, underscore the therapeutic 

potential of H. perforatum's constituents. Our 

study paves the way for further research and 

development of phytochemical-based 

therapeutics, contributing to the expanding 

arsenal of natural compounds in modern 

medicine. 
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  نشـرة العـلوم الصيدليــــــة

 جامعة أسيوط
 

 

 

Hypericum perforatum

 لمملكة العربية السعوديةالباحة ، ا 8811قسم الكيمياء الصيدلانية ، كلية الصيدلة ، جامعة الباحة ، ص. ب 

. 

     Hypericum perforatum  

.

  hypericin (HP-1), 

biapigenin (HP-2), kaempferol (HP-3), hyperforin (HP-4), hyperocide (HP-5)  

 acetylcholinesterase (AChE)    

 butyrylcholinesterase (BChE) 

  The Glide-XP module from Schrödinger 

   .IMods 

 AChE 

 HP-2 (-7.461 kcal/mol) and HP-1 (-7.304 

kcal/mol) BChE 

 HP-5 (-7.991 kcal/mol) and HP-3 (-7.849 kcal/mol)  

swissADMEpkSCMstoptoxmolinspiration
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