SYNTHESIS AND ANTICONVULSANT ACTIVITY OF 1,3-DISUBSTITUTED 2,4(1H,3H)QUINAZOLINEDIONE

Abdel Ghany Ali El-Helby

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

تم فى هذا البحث تشييد مركبات جديدة من نواة الكينازولين دايون وذلك عن طريق عمل ملح الصوديوم ثم تكثيفه مع خلات كلورو الأيثيل والبروبيل والكلوروأسيتانليد وقد أمكن عمل الهيدر ازيدات من الإسترات الناتجة وتفعيلها مع بعض الألدهيدات وكذلك تكثيفها مع بعض الأنهيدريدات وتم إثبات التركيب البنائى لجميع المركبات عن طريق التحليل الدقى لعناصر المركبات والأشعة دون الحمراء والرنين النووى المغناطيسى ومطياف الكتلة وقد تم أختبار بعض المركبات الجديدة كمضادات للشنجات العصبية على الفئران مستعملا مادة الفينوباربيتون صوديوم كمرجع فوجد أن لها فاعلية ضعيفة وذلك نتيجة تغيير مجموعة الأستر الى الوضع من الكينازولين دايون مقارنة بالفاعلية العالية عندما كانت مجموعة الأسترات فى الوضع فى الأبحاث السابقة

Some new 2,4(1H,3H)-quinazolinedione were synthesized and characterized by elemental analysis, IR, ¹HNMR and Ms spectral data. Pharmacological evaluation of some of the synthesized compounds as anticonvulsants showed that they displayed weak anticonvulsant activity relative to phenobarbitone sodium as reference drug.

INTRODUCTION

The quinazolinedione derivatives have reported been to exhibit different pharmacological activities such as: hypnotic, anticonvulsant,^{1,2} analgesic,^{3,4} antiinflammatory,⁵ antimicrobial,⁶⁻⁸ antitubercular,⁹ serotoin reuptake inhibition,¹⁰ matrix metalloproteinase (MMP) inhibitors¹¹ and puromycin-sensitive aminopeptidase inhibitors.¹² In 1986, Ossman et al.¹³ synthesized some new derivatives of 1.3-disubstituted quinazolinedione which showed hypnotic and anticonvulsant activities. El-Helbv^{14,15} synthesized some 1.3disubstituted quinazolinediones and evaluated their anticonvulsant and hypnotic effects. The ester group of all of the synthesized compounds¹³⁻¹⁵ is the pharmacophoric^{14,15} group which is present at the 3-position of the quinazolinedione. In the present work, the ester group was inserted into position 1 to study its effect on the expected anticonvulsant activity. The present work was performed according Schemes 1 and 2.

EXPERIMENTAL

All melting points were carried out on a Geriffin melting point apparatus and are uncorrected. Elemental analyses were performed on CHN analyzer the at Microanalytical unit, Cairo University, Cairo, Egypt. The IR spectra were recorded on a Pye Unicam SP-1000 IR spectrophotometer at Microanalytical Unit., Cairo University. ¹HNMR were recorded on a Joel 200 MHz spectrophotometer at Faculty of Science, Cairo, University, Cairo, Egypt. and Inova 400 Cosy-Chem. buffalo edu. at the Natural Science Complexes, Buffalo, USA. Chemical shifts are given as *b*values relative to TMS as internal standard. Mass spectra were performed on Hewlett Packard 5988 (70 ev) spectrometer at the Microanalytical Unit, Cairo, University.

The following intermediates were prepared according to reported procedures which include methyl 2-(3-ethyl and 3-phenylureido) benzoate¹⁶ **II**;_{1,2}, 3-ethyl and 3-phenyl-2,4-(1H,3H) quinazolinediones¹⁶ **III**;_{1,2} and the sodium salts of 3-ethyl and 3-phenyl-2,4-(1H,3H) quinazolinediones IV;_{1,2}.¹⁷

Scheme 1

 $R = C_2H_5$ and C_6H_5

Scheme 2

Alkyl 3-ethyl/3-phenyl-2,4-(1H,3H)-quinazolinedione-1-yl acetates III;₁₋₁₀

The sodium salts $II_{;1,2}$, 2.12 g, 2.6 g (0.01 mole) and alkyl chloroacetates 1.09 g (0.01 mole) in dimethylformamide (20 ml) were heated on water-bath for 3 hrs. The reaction mixture was poured onto ice-cold water and stirred for 30 min. The solid obtained was filtered and crystallized from ethanol (Table 1).

Ethyl 3-[3-phenyl-2,4-(1H,3H)-quinazolinedione-1-yl] propionate IV

Was prepared by interaction of the sodium salt Π ;₂, 2.6 g (0.01 mole) and ethyl chloropropionate 1.37 g (0.01 mole) in DMF as mentioned above (Table 1).

1-Arylaminocarbonylmethyl-3-ethyl/3phenyl-2,4-(1H,3H)-quinazolinediones V;₁₋₄

Were prepared by interaction of the sodium salt $II;_2$, 2.6 g (0.01 mole) and chloroacetanilides 1.66 g (0.01 mole) in DMF as mentioned above (Table 2).

3-Ethyl/3-phenyl-2,4-(1H,3H)-quinazolinedione-1-yl acetic acid hydrazides VI;_{1.2}

A mixture of ethyl [3-ethyl and 3-phenyl)-2,4-(1H, 3H)-quinazoinedione] acetate $III;_{2,7}$, 2.48 g (0.01 mole) and hydrazine hydrate 5 ml (0.1 mole) in ethanol (20 ml) was stirred and heated at 70° for 2 hrs, then cooled. The solid obtained was filtered, washed with water and crystallized from ethanol (Table 2).

1-(Arylidenehydrazinocarbonylmethyl)-3ethyl-2,4-(1H,3H)-quinazolindione VII;14

A mixture of 1-[(3-ethyl)-2,4-(1H,3H)-quinazolinedione] acetic acid hydrazide **VI**;₁ 2.62 g (0.01 mole) and the appropriate aldehydes (0.01 mole) in absolute ethanol (20 ml) was heated under reflux for 3 hrs. The mixture was cooled, poured onto water and the solid obtained was crystallized from ethanol (Table 2).

1-(3,5-Dimethylpyrazol-1-yl) carbonylmethyl-3-ethyl / 3-phenyl-2,4(1H,3H)quinazolinedione VIII;_{1.2}

A mixture of 1-[(3-ethyl-3-phenyl)-2,4-(1H,3H)-quinazolinedione] acetic acid hydrazide **VI**;_{1,2}, 2.62 g and 3.1 g (0.01 mole) and acetylacetone 2 ml (0.02 mole) was heated under reflux for 2 hrs. The reaction mixture was cooled and stirred well for 15 min. until a solid mass was separated. The solid was filtered, dried and crystallized from aqueous ethanol **VIII**;₁, m.p 187°, yield 2.28 g (70%),**VIII**;₂ m.p 205°, yield 2.81 g (75%).

Analysis for **VIII**; C₁₇H₁₈N₄O₃, M.wt. 326.30.

	C%	H%	N%
Calcd.	62.57	5.56	17.16
Found	62.43	5.60	16.70

Analysis for **VIII**; $C_{21}H_{18}N_4O_3$, M.wt 374.39.

	C%	H%	N%
Calcd.	67.37	4.85	14.96
Found.	67.23	4.99	1 4.89

1-(Isatin hydrazoinocarbonylmethyl)-3ethyl-2,4-(1H,3H)-quinazolinedione IX

A mixture of VI;₁, 2.62 g (0.01 mole) and isatin 1.47 g (0.01 mole) was heated under reflux for 12 hrs in 1,4-dioxane (50 ml). The reaction mixture was concentrated and the product obtained was filtered and crystallized from ethanol m.p 290°, yield 2.94 g (75%).

Analysis for IX $C_{20}H_{17}N_5O_4$, M. wt 391.38

-	C%	H%	N%
Calcd.	61.38	4.38	17.89
Found	61.48	4.37	17.83.

1-(1,8-Naphthalimidoaminocarbonylmethyl)-3-ethyl-2,4-(1H,3H)-quinazolinedione X

A mixture of VI; 2.62 g (0.01 mole) and 1,8-naphthalic anhydride 1.98 g (0.01 mole) was heated under reflux for 4 hrs in absolute ethanol (50 ml). The reaction mixture was distilled under reduced pressure to evaporate the solvent. The solid obtained was crystallized from ethanol, m.p 295-6°, yield 2.7 g (61%).

Analysis for X $C_{24}H_{18}N_4O_5$, M. wt 442.42								
C% H% N%								
Calcd.	65.15	4.10	12.65					
Found.	65.50	5.47	12.61					

1-(Acetylaminocarbamoylmethyl)-3-ethyl and phenyl-2,4(1H,3H)-quinazolinedione XI;_{1.2}

A mixture of the acetic acid hydrazide **VI**;_{1,2} 2.62 g and 3.1 g (0.01 mole) and acetic anhydride (20 ml) was heated under reflux overnight. Acetic anhydride was then distilled

Table 1: Physical properties of 2, 4 (1H, 3H) quinazolinediones, III₁₋₁₀.

Comp.	R	R^1	n	Yield	M.P, °	M. Formula		Analyses		
No.	K	К	n	%	WI.F,	M.Wt	%	Calc.	Found	
								С	59.54	59.84
III ₁	C_2H_5	CH ₃	1	81	160-1	$C_{13}H_{14}N_2O_4$	Н	5.38	5.51	
						262.26	Ν	10.68	10.24	
							С	60.86	60.71	
III ₂	C_2H_5	C_2H_5	1	80	90-1	$C_{14}H_{16}N_2O_4$	Н	5.84	5.64	
						276.29	Ν	10.14	10.10	
							С	62.06	61.99	
III ₃	C_2H_5	$C_{3}H_{7}(n)$	1	78	135-6	$C_{15}H_{18}N_2O_4$	Н	6.25	5.72	
						290.31	Ν	9.65	9.59	
							С	62.06	61.63	
III ₄	C_2H_5	C ₃ H ₇ (iso)	1	80	110-2	$C_{15}H_{18}N_2O_4$	Н	6.25	5.67	
	-					290.31	Ν	9.65	9.61	
							С	63.14	62.20	
III ₅	C_2H_5	C_4H_9 (iso)	1	69	125-6	$\begin{array}{c} C_{16}H_{20}N_{2}O_{4}\\ 304.34 \end{array}$	Н	6.62	6.67	
_	-						Ν	9.20	9.15	
							С	65.80	65.76	
III ₆	C_6H_5	CH ₃	1	75	160-1	$C_{17}H_{14}N_2O_4$	Н	4.55	4.34	
		-				310.30	Ν	9.03	8.94	
							С	66.66	66.43	
III ₇	C_6H_5	C_2H_5	1	77	165-6	$C_{18}H_{16}N_2O_4$	Н	4.97	4.86	
						324.33	Ν	8.64	8.77	
							С	67.44	67.39	
III ₈	C_6H_5	$C_{3}H_{7}(n)$	1	65	141-3	$C_{19}H_{18}N_2O_4$	Н	5.36	5.45	
						338.36	Ν	8.28	8.22	
							С	67.44	67.44	
III9	C_6H_5	C ₃ H ₇ (iso)	1	67	155-6	$C_{19}H_{18}N_2O_4$	Н	5.36	5.08	
-	-					338.36	Ν	8.28	7.90	
						$C_{20}H_{20}N_2O_4$	С	68.07	67.73	
III ₁₀	C_6H_5	C ₄ H ₉ (iso)	1	61	115-6		Н	5.72	5.63	
	-					352.38	Ν	7.95	7.62	
							С	67.44	67.35	
IV	C_6H_5	C_2H_5	2	63	145-7	$C_{19}H_{18}N_2O_4$	Н	5.36	5.24	
						338.36	Ν	8.28	8.22	

 Table 2: Physical properties of 2, 4 (1H, 3H) quinazolinediones, V-VII.

Comp.	R	R^2	Yield	M.P, °	M. Formula		Alaysis	5
No.	K	К	%	IVI.F,	M.Wt	%	Calc.	Found
						С	71.15	70.95
V ₁	C_6H_5		72	280-1	C ₂₂ H ₁₇ N ₃ O ₃ 371.39	Н	4.61	5.05
					571.59	Ν	11.31	11.20
					СЧИО	С	71.67	71.61
V_2	C_6H_5		71	300-2	C ₂₃ H ₁₉ N ₃ O ₃ 385.42	Н	4.97	5.02
					365.42	Ν	10.90	10.90
					$C_{23}H_{19}N_3O_4$	С	68.82	68.54
V ₃	C_6H_5	$ OCH_3$	75	250-2	401.41	Н	4.77	4.65
					401.41	Ν	10.47	10.65
					$C_{22}H_{16}BrN_4O_3$	С	58.68	58.84
V_4	C_6H_5	— Br	79 780-7	450.28	Н	3.58	3.70	
					430.28	Ν	9.33	9.29
		-NH ₂	85	225-6	$\begin{array}{c} C_{12}H_{14}N_4O_3\\ 262.26\end{array}$	С	54.96	54.73
VI_1	VI ₁ C ₂ H ₅					Н	5.38	5.11
						Ν	21.36	21.32
					$C_{16}H_{14}N_4O_3$	С	61.93	61.61
VI ₂	C_6H_5	$-NH_2$	87	250-2	310.31	Н	4.55	4.69
	0.0				510.51	Ν	18.06	17.95
					$C_{19}H_{18}N_4O_3$	С	65.13	65.19
VII_1	C_2H_5	N=CH-	85	285-6	350.37	Н	5.18	5.14
					550.57	Ν	15.99	16.13
					$C_{20}H_{20}N_4O_4$	С	65.92	65.76
VII ₂	C_2H_5	NHN=CH-CH ₃ -CH ₃	75	275-6	364.40	Н	5.53	5.30
					501.10	Ν	15.38	15.42
		$C_{17}H_{16}N_4O_3S$	С	57.24	57.36			
VII ₃	C_2H_5	H ₅ NHN=CH	72	255-7	356.36	Н	4.52	4.51
		S'				N	15.71	16.02
		NHN=CH-		CarHacN.O.	$C_{23}H_{20}N_4O_3$	С	68.99	69.19
VII ₄	C_2H_5		63	295-6	400.43	Н	5.03	5.37
					400.43	Ν	13.99	13.89

under reduced pressure. The reaction mixture was cooled and the solid obtained was crystallized from ethanol. **XI**;₁, m.p= 260° yield 2.13 g (70%) and **XI**;₂, m.p 285° yield 2.11 g (65%).

Analysis for XI; C ₁₄ H ₁₆ N ₄ O ₄ , M.wt 304.36,								
C%	H%	N%						
55.25	5.30	18.42						
54.60	5.42	18.03						
I; ₂ C ₁₈ H	$_{16}N_4O_4$,	M.wt 352.35						
C%	H%	N%						
61.36	4.57	15.90						
61.62	4.11	15.90						
	C% 55.25 54.60 I; ₂ C ₁₈ H C% 61.36							

RESULTS AND DISCUSSION

Reaction of methyl anthranilate with ethyl and phenyl isocyanate in THF gave methyl 2-(3-ethyl and 3-phenylureido) benzoate¹⁶ which upon treatment with aqueous solution of 10% NaOH in ethanol and stirring over night at room temperature then acidified with HCl, the 3-ethyl and 3-phenyl-2,4-(1H,3H) guinazolinediones¹⁶ $I_{;1,2}$ were obtained. The latter when treated with NaH in THF afforded the corresponding sodium salt II;1,2 in good vields¹⁷ which upon reaction with alkyl chloroacetates or propionates afforded the alkyl 1-[3-ethyl and 3-phenyl-2,4-(1H,3H)-quinazolinedione] acetates III;1-10 and ethyl 1-[3phenyl-2,4-(1H,3H)-quinazolinedione] propionate IV. The IR spectra of compounds III; 1. 10 are characterized by the appearance of an ester carbonyl band at 1726-1716 cm⁻¹, the carbonyl bands of quinazolinediones nucleus appeared at 1658 cm⁻¹ and 1606 cm⁻¹, ¹HNMR spectra of these compounds were characterized by the presence of a deshielded methylene group at δ 4.87-5.02 ppm. Reaction of the sodium salt II;2 with chloroacetanilides in DMF afforded 1-arylaminocarbonylmethyl-3phenyl-2,4(1H,3H)-quinazolinediones V;1-4. The ¹HNMR spectra of these compounds showed singlet of 2H due to metylene group at δ 4.86-5.02 ppm and another singlet of 1H due to NH group at δ 8.00-10.35 ppm. Hydrazinolysis of the ester compounds III;2.7 in ethyl acohol by heating for 30 min. afforded the acetic acid hydrazids VI;1.2. The IR spectra of such compounds revealed the amide NH

stretching at 3210, 3330 cm⁻¹. IR, ¹HNMR and Ms of these compounds are presented in Table (3). Reaction of the hydrazides $VI_{1,2}$ with the appropriate aromatic aldehydes in ethanol gave the arylidenes VII;1-4. The IR spectra of such compounds showed bands at 3293 cm⁻¹, 1694 cm⁻¹, 1671 cm⁻¹ for NH and carbonyl absorption bands respectively. ¹HNMR spectra characterized by the presence are of deshielded-CH₂- group which ranged from δ 5.33-5.35 ppm. The pyrazole derivatives VIII;1,2 was obtained from the reaction of acetylacetone with the acetic acid hydrazides VII;_{1,2} in ethanol. The ¹HNMR spectrum of compound VIII;1 showed two singlet signals of two methyl groups at C_3 and C_5 of the pyrazole ring at δ 2.28 and δ 2.51 ppm. The singlet signal of the pyrazole proton at 4-position appeared at 6.31 ppm, the singlet of 2H of methylene group at δ 5.69 ppm. The mass spectrum of compound VIII;2 was recorded in Table (3). Reaction of the acetic acid hydrazide VI;_{1,2} with isatin and naphthalic anhydride in ethanol afforded compounds IX and X respectively. The mass spectra of these compounds are showed in Table (3). Reaction of the hydrazide VI;1,2 with acetic anhydride afforded the acetyl derivatives XI;1,2. The IR spectra of these compounds showed strong bands at 3202 or 3207cm⁻¹, 1708-1711 cm⁻¹ for NH and carbonyl absorption respectively. The ¹HNMR of the compounds **XI**;_{1.2} showed the two singlet signals of the two NH protons at δ 9.88 and δ 10.20 ppm for the compound XI: and at δ 9.88 and at δ 10.19 ppm for the compound XI;2.

Pharmacological testing The anticonvulsant activity^{18,19}

The method reported by Soaje-Echague and Lim¹⁸ was adopted to assess the anticonvulsant activity of the tested compounds and the reference drug in mice.

Thus each of three graded doses for each tested compound as well as for phenobarbitone was injected intraperitoneal to a group of animals. One hour later, the animals were injected subcutaneously with a dose of 100 mg/kg of pentylentetrazole. The animals were observed for further one hour. The animal that showed no clonic seizures during a 60-minute

No.		IR (cm ⁻¹), ¹ HNMR (δ, ppm), Mass (m/z, %), J (Hz)
	IR	2964 (CH aliphatic), 1734 (carbonyl of ester), 1676, 1608 (two carbonyls of
III1	¹ HNMR CDCl ₃	quinazolinedione nucleus) 1.29 (t, 3H, -CH ₂ - <u>CH₃</u> , J= 7.08 Hz), 4.16 (q, 2H, <u>CH₂-CH₃</u> , J= 7.02 Hz), 3.79 (s, 3H, OCH ₃), 4.91 (s, 2H, N-CH ₂ -CO), 6.95 (d, 1H, aromatic proton at C ₈ , J= 8.32 Hz), 7.26 (t, 1H, aromatic proton at C ₆ , J= 7.48 Hz), 7.63 (t, 1H, aromatic proton at C ₇ , J= 7.34 Hz), 8.26 (d, 1H, aromatic proton at C ₅ , J= 6.42 Hz).
	IR	2964 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of
III ₂	¹ HNMR CDCl ₃	quinazolinedione nucleus) 1.30 (doublet of triplet, 6H, 2CH ₃), 4.23 (doublet of quartet, 4H, 2CH ₂), 4.90 (s, 2H, -N-CH ₂), 6.95 (d, 1H, aromatic proton at C ₈ , J= 8.54 Hz), 7.27 (t, 1H, aromatic proton at C ₆ , J= 7.34 Hz), 7.65 (t 1H, aromatic proton at C ₇ , J= 1.78 Hz), 8.29 (d, 1H, aromatic proton at C ₅ , J= 6.38 Hz).
	IR	2972 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of
III ₃	¹ HNMR CDCl ₃	quinazolinedione nucleus) 0.90 (t, 3H, OCH ₂ -CH ₂ -CH ₃ , J= 5.06 Hz), 1.29 (t, 3H, N_CH ₂ -CH ₃ , J= 5.06 Hz), 1.66 (q, 2H, OCH ₂ CH ₂ CH ₃ , J= 5.06 Hz), 4.16 (m, 4H, N-CH ₂ CH ₃ and OCH ₂ -CH ₂), 4.91 (s, 2H, N-CH ₂ COO), 6.95 (d, 1H, aromatic at C ₈ , J= 8.00 Hz), 7.26 (t, 2H, aromatic C ₆ , J= 6.06 Hz), 7.64 (t, 1H, aromatic at C ₇ , J= 1.20 Hz), 8.26 (d, 1H, aromatic C ₅ , J= 5.20 Hz).
	IR	2972 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of
III₄	¹ HNMR CDCl ₃	quinazolinedione nucleus) 1.33-1.24 (m, 9H, 2CH ₃ of CH (<u>CH₃</u>) ₂ and CH ₃ of C ₂ H ₅), 4.19 (q, 2H, N- CH-CH ₃), 4.87 (s, 2H, N-CH ₂ -CO), 5.10 (m, 1H of <u>CH</u> -(CH ₃) ₂), 6.95 (d, 1H, aromatic proton at C ₈ , J= 6.24 Hz), 7.29 (t, 1H, aromatic proton at C ₆ , J= 8.24 Hz), 7.63 (t 1H, aromatic proton at C ₇ , J= 7.20 Hz), 8.26 (d, 1H, aromatic proton at C ₅ , J= 6.54 Hz).
	IR	2966 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1654 (two carbonyls of
III5	¹ HNMR CDCl ₃	quinazolinedione nucleus) 0.88 (d, 6H, of -CH (<u>CH</u> ₃) ₂ , J= 5.60 Hz), 1.29 (t, 3H, N-CH ₂ - <u>CH</u> ₃ , J= 5.60 Hz), 1.91 (m, 1H, - <u>CH</u> (CH ₃) ₂), 3.97 (d, 2H, -N-CH ₂ CO, J= 5.60 Hz), 4.17 (q, 2H, N- <u>CH</u> ₂ -CH ₃ , J= 5.60 Hz), 4.92 (s, 2H, -COO <u>CH</u> ₂)., 6.97 (d, 1H, aromatic at C ₈ , J= 6.80 Hz), 7.26 (t, 1H, aromatic at C ₆ , J= 1.20 Hz), 7.63 (t, 1H, aromatic at C ₇ , J= 6.00 Hz), 8.26 (d, 1H, aromatic at C ₅ , J= 6.04 Hz).
	IR	3068 (CH aliphatic), 1728 (carbonyl of ester), 1662, 1602 (two carbonyls of
III ₆	¹ HNMR CDCl ₃	quinazolinedione nucleus) 3.90 (s, 3H, OCH ₃), 4.95 (s, 2H, N-CH ₂ CO), 7.01-8.31 (M, 9H, aromatic protons).
III ₇	¹ HNMR	1.29 (t, 3H, OCH ₂ - <u>CH₃</u> , J= 7.16 Hz), 4.27 (q, 2H, <u>OCH₂-CH₃</u> , J= 7.12 Hz),
1117	CDCl ₃	4.93 (s, 2H, N-CH ₂ CO), 7.01-8.30 (m, 9H, aromatic protons)
III ₈	¹ HNMR (Acetone- d_6)	0.89 (t, 3H, CH ₃ , J= 5.20 Hz), 1.65 (m, 2H, CH ₂ -CH ₂ - <u>CH₃</u>), 4.12 (t, 2H, <u>OCH₂</u> , J= 5.60 Hz), 5.02 (s, 2H, N-CH ₂ CO), 7.32-8.17 (m, 9H, aromatic protons)
	IR	2972 (CH aliphatic), 1730 (carbonyl of ester), 1710, 1668 (two carbonyls of
III9	¹ HNMR CDCl ₃	quinazolinedione nucleus) 1.28 (d, 6H, CH (<u>CH</u> ₃) ₂ , J= 6.24 Hz), 4.90 (s, 2H, N-CH ₂ CO), 5.18 (m, 1H, <u>CH</u> (CH ₃) ₂), 7.00-8.30 (m, 9H, aromatic protons).

 Table 3: Spectral data of the new compounds (III-XI).

Table 3: Continued.

Table 5:	Continued.	
No.		IR (cm ⁻¹), ¹ HNMR (δ , ppm), Mass (m/z, %), J (Hz)
	IR	2970 (CH aliphatic), 1738 (carbonyl of ester), 1712, 1666 (two carbonyls of
		quinazolinedione nucleus)
III ₁₀	¹ HNMR	0.89 (d, 6H, CH (<u>CH</u> ₃) ₂ , J= 6.80 Hz), 1.92 (m, 1H, <u>CH</u> (CH ₃) ₂), 3.95 (d, 2H,
	Acetone	COO <u>CH</u> ₂ -CH (CH ₃) ₂ , J= 4.80 Hz), 5.03 (s, 2H, N <u>CH</u> ₂ CO), 7.32-8.17 (m,
		9H, aromatic protons).
	IR	2972 (CH aliphatic), 1734 (carbonyl of ester), 1710, 1668 (two carbonyls of
		quinazolinedione nucleus)
IV	¹ HNMR	1.25 (t, 3H, OCH ₂ - <u>CH₃</u> , J= 7.06 Hz), 4.18 (q, 2H, <u>OCH₂-CH₃</u> , J= 7.12 Hz),
	CDCl ₃	2.80 (t, 2H, N- <u>CH</u> ₂ CH ₂ , J= 7.82 Hz), 4.48 (t, 2H, -CH ₂ <u>CH</u> ₂ CO, J= 7.62 Hz),
		7.26-8.31 (m, 10H, aromatic protons) and CDCl ₃ protons.
	IR	3272 (NH amidic), 1710 (amidic carbonyl) 1662, 1602 (two carbonyl of
\mathbf{V}_1		quinazolinedione nucleus)
v 1	¹ HNMR	5.01 (s, 2H, N-CH ₂ CO), 7.04-8.14 (m, 14H, aromatic protons), 10.35 (s, 1H,
	DMSO-d ₆	NH).
	¹ HNMR	2.29 (s, 3H, p-CH ₃), 4.87 (s, 2H, N-CH ₂ CO), 7.09-8.28 (m, 15H, 12,
\mathbf{V}_2	CDCl ₃	aromatic protons, NH and CDCl ₃).
• 2	Ms	M/z 385 (M+, $C_{23}H_{19}N_3O_3$, 5.84%), 2.79 ($C_{16}H_{11}N_2O_3$, 56.60%), 132
	1	$(C_8H_6NO, 100\% base)$
V_3	¹ HNMR	3.77 (s, 3H, p-OCH ₃), 4.86 (s, 2H, N-CH ₂ CO), 6.65-8.33 (m, 15H, 12
• 3	CDCl ₃	aromatic protons, NH and CDCl ₃).
	IR	3272 (NH aliphatic), 3286 (NH, amidic), 1710 (amidic carbonyl), 1664,
V_4		1608 (two ketonic carbonyl of quinazolinedione nucleus)
• 4	Ms	M/z 451, 499 (M, M ⁺² , 1.37, 1.30% respectively), 279 (M 96.21%), 132
		$(C_8H_6NO, 100\% \text{ base})$
	IR	3328 (NH amidic), 3294 (NH ₂), 1700, 1666 and 1608 (carbonyl groups)
	¹ HNMR	1.29 (t, 3H, $-CH_2-\underline{CH}_3$, J= 6.00 Hz), 4.17 (q, 2H, \underline{CH}_2-CH_3 , J= 6.00 Hz),
	CDCl ₃	3.89 (s, 2H, NH ₂), 4.76 (s, 2H, NCH ₂ CO), 7.30 (t, 1H, aromatic at C ₈ , J=
VI_1		9.60Hz), 7.36 (d, 1H, aromatic at C ₆ , J= 6.80 Hz), 7.49 (s, 1H, NH), 7.69 (t,
	Ма	1H, aromatic at C ₇ , J= 1.20 Hz), 8.25 (d, 1H, aromatic at C ₅ , J= 5.20 Hz).
	Ms	M/z 262 (M^+ , $C_{12}H_{14}N_4O_3$, 1.09%), 231 ($C_{12}H_{11}N_2O_3$, 42.9%),
		$\frac{203 (C_{11}H_{11}N_2O_2, 20.35), 132 (C_8H_6NO, 100\% \text{ base})}{2.80 (c_22H_NH2), 4.03 (c_22H_NCH2CO), 7.04.8.20 (m. 11H_0) aromatic}$
	1HNMR CDC13	3.80 (s, 2H, NH2), 4.93 (s, 2H, NCH2CO), 7.04-8.29 (m, 11H, 9 aromatic protons, 1H for NH and CDCl3).
VI2	Ms	M/z 310 (M+, C16H14N4O3, 0.9%), 279 (C16H11N2O3, 38.21%), 132
	1015	(C8H6NO, 100% base).
	IR	3194 (NH amidic), 1736 (amidic carbonyl), 1676, 1608 (two ketonic
		carbonyls of quinazolinedione nucleus)
VII1	Ms	M/z 350 (M+, C19H16N4O3, 1.34 %), 231 (C12H11N2O3, 57.26%), 132
	1110	(C8H6NO, 100% base)
	IR	3061 (CH aliphatic), 1713, 1667, 1607 (carbonyls of quinazolinedione and
		CH2CO)
VII2	1HNMR	1.19 (t, 3H, CH2-CH3, J= 5.60 Hz), 2.36 (s, 3H, p-CH3), 4.02 (q, 2H, CH2-
· 	DMSO-d6	CH3, $J = 5.60$ Hz), 5.33 (s, 2H, N-CH2CO), 7.25-8.21 (m, 9H, aromatic
		protons (8) and N= CH-Ph), 11.69 (s, 1H, NH)
	IR	3331 (NH), 3079 (CH aliphatic), 1713, 1660, 1603 (carbonyls of
		quinazolinedione and amide side chain)
VII3	Ms	M/z 356 (M+, C17H16N4O3S, 1.84%), 132 (C8H6NO, 70.10%), 69 (base,
		100%).
	1	

Table 3: Continued.

	IR (cm ⁻¹), ¹ HNMR (δ , ppm), Mass (m/z, %), J (Hz)
IR	3219 (NH), 2922 (CH aliphatic), 1703, 1666, 1906 (carbonyls of
	quinazolinedione and amide side chain).
Ms	M/z 400 (M^+ , $C_{23}H_{20}N_4O_3$, 3.65 %), M/e 231 (, $C_{12}H_{11}N_2O_3$, 46.08 %), M/e
	$132 (C_8H_6NO, 100\% base).$
	1.18 (t, 3H, CH_2 - <u>CH₃</u> , J= 13.28Hz), 2.28 (s, 3H, CH_3 at 3-position of
$DMSO-d_6$	pyrazole group), 2.51 (s, 3H, CH ₃ at 5-position of pyrazole group), 4.02 (q,
	2H, CH ₂ CH ₃ , J= 7.02 Hz), 5.69 (s, 2H, NCH ₂ CO), 6.31 (s, 1H, CH at C ₄ of
m	pyrazole ring).
IR	3061 (CH aliphaatic). 1713, 1667, 1607 (carbonyls of quinazolinedione and
Ma	CH ₂ CO). M/z 374 (M ⁺ , C ₂₁ H ₁₈ N ₄ O ₃ , 0.9%), 278 (M ⁻¹ , C ₁₆ H ₁₁ N ₂ O ₃ , 100 base), M/e,
1015	$132 (C_8H_6NO, 43.1\% \text{ base}).$
IR	3253 (NH), 2973 (CH aliphatic), 1691, 1651, 1616 (carbonyls of
IX	quinazolinedione and isatine group)
Ms	M/z 391 (M^+ , $C_{20}H_{17}N_5O_4$, 0.7%), 231 ($C_{12}H_{11}N_2O_3$, 95.5%) 132 ($C_8H_6NO_7$)
	100% base)
IR	3307 (NH), 1705 (CONH), 1668, 1608, 1586 (carbonyls of quinazoline-
	dione and diphenimide groups)
Ms	M/z 442 (M^+ , $C_{24}H_{18}N_4O_5$, 1.6%), 231 ($C_{12}H_{11}N_2O_3$, 97.1%), 132 (C_8H_6NO ,
	100% base)
IR	3202 (NH), 3058 (CH aliphatic), 1708, 1671, 1608 (carbonyls of quinazoli-
	nedione and amide moiety). $1.18 (211) + 1.85 (221) + 0.05 (221) + 0.01 (2221) + 0.01$
	1.18 (t, 3H, N-CH ₂ - <u>CH₃</u> , J= 1.46 Hz), 1.85 (s, 3H, COCH ₃), 4.01 (q, 2H, N- CH CH L 5 42 Hz) 4.85 (s, 2H N CH CO) 7.21 8 10 (m, 4H comparis
$DMSO-a_6$	CH ₂ CH ₃ , J= 5.42 Hz), 4.85 (s, 2H, N-CH ₂ CO), 7.21-8.10 (m, 4H, aromatic protons), 9.89 (s, 1H, CONH), 10.20 (s, 1H, NHCO)
IR	3207 (NH), 3059 (CH aliphatic), 1711, 1667, 1612 (carbonyl of
ш	quinazoline-dione and amide moiety)
NMR	1.76 (s, 3H, NHCOCH ₃), 4.87 (s, 2H, N-CH ₂ CO), 7.30-8.12 (m, 9H,
DMSO-d ₆	aromatic protons), 9.88 (s, 1H, CONH), 10.19 (s, 1H, NHCOCH ₃).
	Ms ¹ HNMR DMSO-d6 IR Ms IR Ms IR Ms IR Ms IR Ms IR IR Ms IR

period was considered protected against pentylenetetrazole-induced convulsion. The number of protected animals in each group was recorded. The percent of protection as well as the medium effective dose (ED_{50}) and the reltative potency of the tested compounds to the reference drug were calculated as presented in Table 4.

Conclusion

From the data recorded in Table (4), it was shown that most of the tested compounds low effect as anticonvulsant exhibited compared with phenobarbitone as shown in Fig. (1). The lower effect is due to the change of the position of ester moiety from 3-position into the 1-position of 2,4(1H,3H) quinazolinedione when comparing with compounds containing ester moiety at 3position.3,13-15

- Fig. 1: Anticonvulsant activity of tested compounds against Phenobarbital as standard drug on mice
 - Data were represented as mean \pm standard deviation (M \pm SD).
 - Statistical analysis were carried out using instat 2 soft ware program, one way analysis of variance (ANOVA) test was used as statistical test followed by Tukey-Kramer as post ANOVA test for comparison between groups.
 - a: indicates significant different from Phenobarbiton sodium at p < 0.001.

Comp.	Dose	No. of	No. of mice	Drate stier 0/	ED ₅₀ Mg/kg	Relative potency
No	mg/kg	mice Injected	protected	Protection %	mmol/L	X±SD
	50	6	2	33.3	<i>((</i> 7)	
III ₁	100	6	5	83.3	66.7	0.01 ± 0.01^{a}
-	150	6	6	100	(0.254)	
	50	6	3	50	44.5	
III_2	100	6	5	83.3	44.5	0.155 ± 0.05^{a}
_	150	6	6	100	(0.161)	
	50	6	1	16.6	967	
III ₃	100	6	4	66.6	86.7	$0.08\pm0.02^{\mathrm{a}}$
	150	6	6	100	(0.298)	
	50	6	1	16.6	967	
III_5	100	6	4	83.3	86.7	$0.088 \pm 0.017^{\mathrm{a}}$
	150	6	6	100	(0.284)	
	50	6	2	33.3	(2.0	
III ₆	75	6	4	66.6	63.9	$0.124 \pm .0.03^{a}$
-	125	6	6	100	(0.205)	
	50	6	2	33.3	(2.0	
III ₇	75	6	4	66.6	63.9 (0.198)	0.126 ± 0.028^{a}
-	125	6	6	100		
	50	6	2	33.3	55.0	0.172 ± 0.06^{a}
III ₈	75	6	5	83.3	55.9 (0.145)	
Ū	125	6	6	100		
	50	6	1	16.6	70.77	0.121 ± 0.04^{a}
III ₁₀	75	6	4	66.6	72.77	
	125	6	6	100	(0.206)	
	100	6	2	33.3	105.2	
IV	150	6	4	66.6	125.3	0.067 ± 0.02^{a}
	200	6	6	100	(0.37)	
	200	6	1	16.6	272.5	
\mathbf{V}_1	300	6	4	66.6	273.5	0.033 ± 0.01^{a}
-	400	6	6	100	(0.736)	
	200	6	1	16.6	072 5	
VII ₁	300	6	4	66.6	273.5	0.034 ± 0.01^{a}
-	400	6	6	100	(0.731)	
	200	6	2	33.3	022 42	
VIII ₁	300	6	5	83.3	233.43	0.037 ± 0.01^{a}
-	400	6	6	100	(0.666)	
	200	6	1	16.6	272.5	
X	300	6	4	66.6	273.5	0.04 ± 0.009^{a}
	400	6	6	100	(0.618)	
	3.25	6	2	33.33	6.25	
Phenob.	6.25	6	3	50	6.25	1 ± 0.15
/	12.50	6	6	150	(0.025)	_

Table 4: Anticonvulsant effect of some of the synthesized compounds and phenobarbitone sodium as reference compound.

Relative potency = $\frac{\text{ED50 of S.}}{\text{ED50 of T.}}$

a: Indicate significant deferent from Phenobarbiton sodium at p < 0.001.

Acknowledgement

Very thanks to Dr. Mohamed F. Abd Ellah lecturer at Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. for his valuable help in the phamacological testing of the synthesized compounds in this work.

REFERENCES

- 1- M. A. Aziza, F. M. Salama, M. A. Amin and A.G.A. El-Helby, Az. J. Pharm. Sci, 9, 63-74 (1992).
- 2- S. E. S. Barakat, M. A. El-Zahabi and M. F. Radowan, Az. J. Pharm. Sci, 23, 36-45 (1999).
- 3- A. A. El-Helby, S. E. S. Barakat and S. G. Abdel Hamide, Az. J. Pharm. Sci., 23, 25-34(1999).
- 4- M. El-Sadek, M. M. Baraka, S. M. Mostafa and M. Kh. Soltan, Egypt. J. Pharm. Sci., 44 (1), 87-99 (2003).
- 5- M. Y. Ebeid, M. A. S. Amin, El-Sayed S. Barakat, M. K. Ibrahim, A. G. A. El-Helby and H. M. Saker, Saudi Pharm. J., 6 (2) (1998).
- 6- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamid, Pakistan J. Biol. Sci., 7 (7), 1268 (2004).
- 7- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamid, J. Biol. Sci., 4 (4), 504-509 (2004).
- 8- M. A. Al-Omar, S. G. Abdel-Hamide, H. A. Al-Khamees and H. I. El-Subbagh , Saudi Pharm. J., 12 (2), 63-71 (2004).

- 9- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamide, J. Appl. Sci., 4 (2), 302-307 (2004).
- 10- T. W. Butler, A. F. J. Fliri, R. J. Gallaschun, B. P. Jones and J. A. Ragan, Eur, Pat,. Appl. Epl, 083, 178 (Cl. Co7D 498104). 14 Mar 2001, Us. Appl. Pv, 151, 725, 31, 1999 (Eng) Through C. A. Vol. 134, 222727s (2001).
- 11- J. Heinicke, U. Klausmeier, C. Arkona and S. leistner, Ger.; DE 10,101, 324. (Cl. Co7D239/96) 13 Dec. 2001 Appl. 10, 101, 324, 13 Jan., 2001, 8 pp (Ger). Through C. A. 138, 20086n (2002).
- 12- H. Kakuta, A. Tanatani, K. Nagasawa and Y. Hashimoto, Chem. Pharm. Bull., 51 (11), 1273-1282 (2003).
- 13- A. R E. N. Ossman, A. G. N. Osman and A. G. A. El-Helby, Bull. Pharm. Sci., Assiut Univ., 9 (1) 105 (1986).
- 14- A. G. A. El-Helby, Bull. Pharm. Sci., Assiut Univ., 118 (2), 69-78 (1995).
- A. G. A. El-Helby, Egypt J. Pharm. Sci., 36 (1-6), 287-296 (1995).
- 16- E. P. Papadopoulos and C. D. Torres, J. Heterocyclic Chem., 19, 269 (1982).
- 17- N. P. Peet and S. Sunder, J. Org. Chem., 40, 13, 1909-1914 (1975).
- 18- E. Soaje-Echaque and R. K. S. Lim, J. Pharmacol. Exp. Ther., 138, 224 (1962).
- 19- R. A. Turner, "Screening Methods in Pharmacology", Academic Press, INC London LTD, London, New York, 1955, pp.(a) 69 (b)164.