SYNTHESIS AND ANTICONVULSANT ACTIVITY OF 1,3-DISUBSTITUTED 2,4(1H,3H)QUINAZOLINEDIONE

Abdel Ghany Ali El-Helby
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

$$
\begin{aligned}
& \text { تم فى هذا البحث تشييد مركبات جديدة من نواة الكينازولين دايون وذلك عن طريق عمل ملح } \\
& \text { الصوديوم ثم تكثيفه مع خلات كلورو الايثيل و البروبيل و الكلوروو السيتانليد وقد أمكن عمل الهيدر ازيدات } \\
& \text { من الإسترات الناتجة وتفعيلها مع بعض الالدهيدات وكذلك تكثيفها مع بعض الأنهيدريدات. وتم إثبات } \\
& \text { التزكيب البنائى لجميع المركبات عن طريق التُليل الاقى لعناصر المركبات والأشعة دون الحمراء } \\
& \text { والرنين النووى المغناطيسى ومطياف الكتلة وقد تم أختبار بعض المركبات الجديدة كمضادات } \\
& \text { للشنجات العصبية على الفئران مستعملا مادة الفينوباربيتون صوديوم كمرجع فوجد أن لها فاعلية } \\
& \text { ضعيفة وذلك نتيجة تغيير مجموعة الاستر الى الوضع } 1 \text { من الكينازولين دايون مقارنة بالفاعلية } \\
& \text { العالية عندما كانت مجموعة الاسترات فى الوضع بّ فى الآبحاث السابقة. }
\end{aligned}
$$

Abstract

Some new 2,4(1H,3H)-quinazolinedione were synthesized and characterized by elemental analysis, IR, ${ }^{l} H N M R$ and Ms spectral data. Pharmacological evaluation of some of the synthesized compounds as anticonvulsants showed that they displayed weak anticonvulsant activity relative to phenobarbitone sodium as reference drug.

INTRODUCTION

The quinazolinedione derivatives have been reported to exhibit different pharmacological activities such as: hypnotic, anticonvulsant, ${ }^{1,2}$ analgesic, ${ }^{3,4}$ antiinflammatory, ${ }^{5}$ antimicrobial, ${ }^{6-8}$ antitubercular, ${ }^{9}$ serotoin reuptake inhibition, ${ }^{10}$ matrix metalloproteinase (MMP) inhibitors ${ }^{11}$ and puromycin-sensitive aminopeptidase inhibitors. ${ }^{12}$ In 1986, Ossman et al. ${ }^{1{ }^{13}}$ synthesized some new derivatives of 1,3-disubstituted quinazolinedione which showed hypnotic and anticonvulsant activities. El-Helby ${ }^{14,15}$ synthesized some 1,3disubstituted quinazolinediones and evaluated their anticonvulsant and hypnotic effects. The ester group of all of the synthesized compounds ${ }^{13-15}$ is the pharmacophoric ${ }^{14,15}$ group which is present at the 3 -position of the quinazolinedione. In the present work, the ester group was inserted into position 1 to study its effect on the expected anticonvulsant activity. The present work was performed according Schemes 1 and 2.

EXPERIMENTAL

All melting points were carried out on a Geriffin melting point apparatus and are uncorrected. Elemental analyses were performed on CHN analyzer at the Microanalytical unit, Cairo University, Cairo, Egypt. The IR spectra were recorded on a Pye Unicam SP-1000 IR spectrophotometer at Microanalytical Unit., Cairo University. ${ }^{1} \mathrm{HNMR}$ were recorded on a Joel 200 MHz spectrophotometer at Faculty of Science, Cairo, University, Cairo, Egypt. and Inova 400 CosyChem. buffalo edu. at the Natural Science Complexes, Buffalo, USA. Chemical shifts are given as δ values relative to TMS as internal standard. Mass spectra were performed on Hewlett Packard 5988 (70 ev) spectrometer at the Microanalytical Unit, Cairo, University.

The following intermediates were prepared according to reported procedures which include methyl 2-(3-ethyl and 3phenylureido) benzoate ${ }^{16} \mathbf{I I} ; 1,2,3$-ethyl and 3-phenyl-2,4-($1 \mathrm{H}, 3 \mathrm{H}$) quinazolinediones ${ }^{16} \mathbf{~ I I I} ; 1,2$ and the sodium salts of 3 -ethyl and 3 -phenyl-$2,4-(1 \mathrm{H}, 3 \mathrm{H})$ quinazolinediones IV; ;1,2 17

(III; 1-10)

(II)

$$
\begin{aligned}
& \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \text { and } \mathrm{C}_{6} \mathrm{H}_{5} \\
& \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}(\mathrm{n}), \mathrm{C}_{3} \mathrm{H}_{7} \text { (iso) and } \mathrm{C}_{4} \mathrm{H}_{9} \text { (iso) }
\end{aligned}
$$

(IV)

Scheme 1

(XI; $\mathbf{1 , 2}^{2}$)

$$
\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \text { and } \mathrm{C}_{6} \mathrm{H}_{5}
$$

Scheme 2

Alkyl 3-ethyl/3-phenyl-2,4-(1H,3H)-quina-zolinedione-1-yl acetates III; 1 -10

The sodium salts II; $\mathbf{1 , 2}_{2}, 2.12 \mathrm{~g}, 2.6 \mathrm{~g}(0.01$ mole) and alkyl chloroacetates $1.09 \mathrm{~g}(0.01$ mole) in dimethylformamide (20 ml) were heated on water-bath for 3 hrs . The reaction mixture was poured onto ice-cold water and stirred for 30 min . The solid obtained was filtered and crystallized from ethanol (Table 1).

Ethyl 3-[3-phenyl-2,4-(1H,3H)-quinazoline-dione-1-yl] propionate IV

Was prepared by interaction of the sodium salt II; $\mathbf{2}_{2} 2.6 \mathrm{~g}$ (0.01 mole) and ethyl chloropropionate 1.37 g (0.01 mole) in DMF as mentioned above (Table 1).

1-Arylaminocarbonylmethyl-3-ethyl/3-

 phenyl-2,4-(1H,3H)-quinazolinediones $\mathbf{V ; 1 - 4}$Were prepared by interaction of the sodium salt $\mathbf{I I} ;{ }_{2}, 2.6 \mathrm{~g}$ (0.01 mole) and chloroacetanilides 1.66 g (0.01 mole) in DMF as mentioned above (Table 2).

3-Ethyl/3-phenyl-2,4-(1H,3H)-quinazoline-dione-1-yl acetic acid hydrazides VI; $\mathbf{1 , 2}$

A mixture of ethyl [3-ethyl and 3-phenyl)-2,4-($1 \mathrm{H}, 3 \mathrm{H}$)-quinazoinedione] acetate $\mathbf{I I I} \mathbf{;}_{\mathbf{2}, 7}$, 2.48 g (0.01 mole) and hydrazine hydrate 5 ml (0.1 mole) in ethanol (20 ml) was stirred and heated at 70° for 2 hrs , then cooled. The solid obtained was filtered, washed with water and crystallized from ethanol (Table 2).

1-(Arylidenehydrazinocarbonylmethyl)-3-ethyl-2,4-($\mathbf{1 H}, 3 \mathrm{H})$-quinazolindione VII; ${ }^{-4}$

A mixture of 1 -[(3-ethyl)-2,4- $(1 \mathrm{H}, 3 \mathrm{H})-$ quinazolinedione] acetic acid hydrazide VI ; $2.62 \mathrm{~g}(0.01 \mathrm{~mole})$ and the appropriate aldehydes (0.01 mole) in absolute ethanol (20 ml) was heated under reflux for 3 hrs . The mixture was cooled, poured onto water and the solid obtained was crystallized from ethanol (Table 2).

1-(3,5-Dimethylpyrazol-1-yl) carbonyl-methyl-3-ethyl / 3-phenyl-2,4(1H,3H)quinazolinedione VIII; $\mathbf{1 , 2}^{2}$

A mixture of 1-[(3-ethyl-3-phenyl)-2,4$(1 \mathrm{H}, 3 \mathrm{H})$-quinazolinedione] acetic acid hydrazide VI; $\mathbf{1 , 2}_{2}, 2.62 \mathrm{~g}$ and 3.1 g (0.01 mole) and acetylacetone 2 ml (0.02 mole) was heated under reflux for 2 hrs . The reaction mixture
was cooled and stirred well for 15 min . until a solid mass was separated. The solid was filtered, dried and crystallized from aqueous ethanol VIII; $1, \quad$ m.p 187°, yield 2.28 g (70\%),VIII; ${ }_{2}$ m.p 205 ${ }^{\circ}$, yield $2.81 \mathrm{~g}(75 \%)$.

Analysis for VIII; ${ }_{1} \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$, M.wt. 326.30.			
	C\%	H\%	N\%
Calcd.	62.57	5.56	17.16
Found	62.43	5.60	16.70
Analysis for VIII; ${ }_{2} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$, M.wt 374.39			
	C\%	H\%	N\%
Calcd.	67.37	4.85	14.96
Found.	67.23	4.99	14.89

1-(Isatin hydrazoinocarbonylmethyl)-3-ethyl-2,4-(1H,3H)-quinazolinedione IX

A mixture of $\mathrm{VI} ; 1,2.62 \mathrm{~g}(0.01 \mathrm{~mole})$ and isatin $1.47 \mathrm{~g}(0.01 \mathrm{~mole})$ was heated under reflux for 12 hrs in 1,4-dioxane (50 ml). The reaction mixture was concentrated and the product obtained was filtered and crystallized from ethanol m.p 290°, yield $2.94 \mathrm{~g}(75 \%)$.

Analysis for IX $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$, M. wt 391.38

	$\mathrm{C} \%$	$\mathrm{H} \%$	$\mathrm{~N} \%$
Calcd.	61.38	4.38	17.89
Found	61.48	4.37	17.83.

1-(1,8-Naphthalimidoaminocarbonyl-methyl)-3-ethyl-2,4-(1H,3H)-quinazolinedione X

A mixture of VI; ${ }_{1} 2.62 \mathrm{~g}$ (0.01 mole) and 1,8 -naphthalic anhydride 1.98 g (0.01 mole) was heated under reflux for 4 hrs in absolute ethanol (50 ml). The reaction mixture was distilled under reduced pressure to evaporate the solvent. The solid obtained was crystallized from ethanol, m.p 295-6 ${ }^{\circ}$, yield 2.7 g (61%).

Analysis for $\mathrm{X}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$, M. wt 442.42			
	$\mathrm{C} \%$	$\mathrm{H} \%$	$\mathrm{~N} \%$
Calcd.	65.15	4.10	12.65
Found.	65.50	5.47	12.61

1-(Acetylaminocarbamoylmethyl)-3-ethyl and phenyl-2,4(1H,3H)-quinazolinedione XI; $\mathbf{1 , 2}$

A mixture of the acetic acid hydrazide VI; $\mathbf{1 , 2}_{2} 2.62 \mathrm{~g}$ and $3.1 \mathrm{~g}(0.01 \mathrm{~mole})$ and acetic anhydride (20 ml) was heated under reflux overnight. Acetic anhydride was then distilled

Table 1: Physical properties of 2, $4(1 \mathrm{H}, 3 \mathrm{H})$ quinazolinediones, $\mathbf{I I I}_{\mathbf{1 - 1 0}}$.

Comp. No.	R	R^{1}	n	Yield \%	M.P, ${ }^{\circ}$	M. Formula M.Wt	Analyses		
							\%	Calc.	Found
III_{1}	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	1	81	160-1	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 262.26 \end{gathered}$	C H N	$\begin{gathered} \hline 59.54 \\ 5.38 \\ 10.68 \\ \hline \end{gathered}$	$\begin{gathered} \hline 59.84 \\ 5.51 \\ 10.24 \end{gathered}$
III_{2}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	1	80	90-1	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 276.29 \end{gathered}$	C H N	$\begin{gathered} \hline 60.86 \\ 5.84 \\ 10.14 \end{gathered}$	$\begin{gathered} \hline 60.71 \\ 5.64 \\ 10.10 \end{gathered}$
III_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}(\mathrm{n})$	1	78	135-6	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 290.31 \end{gathered}$	C H N	$\begin{gathered} 62.06 \\ 6.25 \\ 9.65 \\ \hline \end{gathered}$	$\begin{gathered} 61.99 \\ 5.72 \\ 9.59 \\ \hline \end{gathered}$
III_{4}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$ (iso)	1	80	110-2	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 290.31 \end{gathered}$	C H N	$\begin{gathered} \hline 62.06 \\ 6.25 \\ 9.65 \end{gathered}$	$\begin{gathered} \hline 61.63 \\ 5.67 \\ 9.61 \end{gathered}$
III_{5}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{4} \mathrm{H}_{9}$ (iso)	1	69	125-6	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 304.34 \end{gathered}$	C H N	$\begin{gathered} 63.14 \\ 6.62 \\ 9.20 \\ \hline \end{gathered}$	$\begin{gathered} 62.20 \\ 6.67 \\ 9.15 \\ \hline \end{gathered}$
III_{6}	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	1	75	160-1	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 310.30 \end{gathered}$	C H N	$\begin{gathered} \hline 65.80 \\ 4.55 \\ 9.03 \end{gathered}$	$\begin{gathered} \hline 65.76 \\ 4.34 \\ 8.94 \end{gathered}$
III_{7}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	1	77	165-6	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 324.33 \end{gathered}$	C H N	$\begin{gathered} \hline 66.66 \\ 4.97 \\ 8.64 \end{gathered}$	$\begin{gathered} \hline 66.43 \\ 4.86 \\ 8.77 \end{gathered}$
III_{8}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}(\mathrm{n})$	1	65	141-3	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 338.36 \end{gathered}$	C H N	$\begin{gathered} \hline 67.44 \\ 5.36 \\ 8.28 \end{gathered}$	$\begin{gathered} \hline 67.39 \\ 5.45 \\ 8.22 \end{gathered}$
III,	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$ (iso)	1	67	155-6	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 338.36 \end{gathered}$	C H N	$\begin{gathered} \hline 67.44 \\ 5.36 \\ 8.28 \end{gathered}$	$\begin{gathered} \hline 67.44 \\ 5.08 \\ 7.90 \end{gathered}$
III_{10}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{4} \mathrm{H}_{9}$ (iso)	1	61	115-6	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 352.38 \end{gathered}$	C H N	$\begin{array}{r} 68.07 \\ 5.72 \\ 7.95 \\ \hline \end{array}$	$\begin{gathered} 67.73 \\ 5.63 \\ 7.62 \\ \hline \end{gathered}$
IV	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	2	63	145-7	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 338.36 \end{gathered}$	C H N	$\begin{gathered} \hline 67.44 \\ 5.36 \\ 8.28 \end{gathered}$	$\begin{gathered} \hline 67.35 \\ 5.24 \\ 8.22 \end{gathered}$

Table 2: Physical properties of 2, $4(1 \mathrm{H}, 3 \mathrm{H})$ quinazolinediones, V-VII.

Comp. No.	R	R^{2}	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	M.P, ${ }^{\circ}$	M. Formula M.Wt	Alaysis		
						\%	Calc.	Found
\mathbf{V}_{1}	$\mathrm{C}_{6} \mathrm{H}_{5}$		72	280-1	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \\ 371.39 \end{gathered}$	C H N	$\begin{gathered} 71.15 \\ 4.61 \\ 11.31 \end{gathered}$	$\begin{gathered} 70.95 \\ 5.05 \\ 11.20 \end{gathered}$
\mathbf{V}_{2}	$\mathrm{C}_{6} \mathrm{H}_{5}$		71	300-2	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \\ 385.42 \end{gathered}$	C H N	$\begin{gathered} 71.67 \\ 4.97 \\ 10.90 \end{gathered}$	$\begin{gathered} \hline 71.61 \\ 5.02 \\ 10.90 \end{gathered}$
\mathbf{V}_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$		75	250-2	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \\ 401.41 \end{gathered}$	C H N	$\begin{gathered} 68.82 \\ 4.77 \\ 10.47 \end{gathered}$	$\begin{gathered} 68.54 \\ 4.65 \\ 10.65 \end{gathered}$
\mathbf{V}_{4}	$\mathrm{C}_{6} \mathrm{H}_{5}$		79	280-2	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrN}_{4} \mathrm{O}_{3} \\ 450.28 \end{gathered}$	C H N	$\begin{gathered} 58.68 \\ 3.58 \\ 9.33 \end{gathered}$	$\begin{gathered} 58.84 \\ 3.70 \\ 9.29 \end{gathered}$
VI ${ }_{1}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$-\mathrm{NH}_{2}$	85	225-6	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \\ 262.26 \end{gathered}$	C H N	$\begin{gathered} 54.96 \\ 5.38 \\ 21.36 \end{gathered}$	$\begin{gathered} 54.73 \\ 5.11 \\ 21.32 \end{gathered}$
$\mathbf{V I}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{NH}_{2}$	87	250-2	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \\ 310.31 \end{gathered}$	C H N	$\begin{gathered} 61.93 \\ 4.55 \\ 18.06 \end{gathered}$	$\begin{gathered} \hline 61.61 \\ 4.69 \\ 17.95 \end{gathered}$
VII ${ }_{1}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{N}=\mathrm{CH}-\langle\rightarrow$	85	285-6	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \\ 350.37 \end{gathered}$	C H N	$\begin{gathered} 65.13 \\ 5.18 \\ 15.99 \end{gathered}$	$\begin{gathered} 65.19 \\ 5.14 \\ 16.13 \\ \hline \end{gathered}$
VII_{2}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{NHN}=\mathrm{CH}-\mathrm{CH}_{3}$	75	275-6	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \\ 364.40 \end{gathered}$	C	$\begin{gathered} 65.92 \\ 5.53 \\ 15.38 \end{gathered}$	$\begin{gathered} 65.76 \\ 5.30 \\ 15.42 \end{gathered}$
VII_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$		72	255-7	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} \\ 356.36 \end{gathered}$	C H N	$\begin{gathered} \hline 57.24 \\ 4.52 \\ 15.71 \end{gathered}$	$\begin{gathered} \hline 57.36 \\ 4.51 \\ 16.02 \end{gathered}$
VII_{4}	$\mathrm{C}_{2} \mathrm{H}_{5}$		63	295-6	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \\ 400.43 \end{gathered}$	C H N	$\begin{gathered} \hline 68.99 \\ 5.03 \\ 13.99 \end{gathered}$	$\begin{gathered} 69.19 \\ 5.37 \\ 13.89 \end{gathered}$

under reduced pressure. The reaction mixture was cooled and the solid obtained was crystallized from ethanol. XI; $; 1$, m.p $=260^{\circ}$ yield 2.13 g (70%) and $\mathbf{X I}$; 2 , m.p 285° yield $2.11 \mathrm{~g}(65 \%)$.
$\begin{array}{ccccc}\text { Analysis for } \mathbf{~ X I} ;{ }_{1} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \text {, } & \text { M.wt 304.36, } \\ & \mathrm{C} \% & \mathrm{H} \% & \mathrm{~N} \% \\ \text { Calcd. } & 55.25 & 5.30 & 18.42 \\ \text { Found. } & 54.60 & 5.42 & 18.03\end{array}$
Analysis for $\mathbf{X I} ;{ }_{2} \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$, M.wt 352.35

	$\mathrm{C} \%$	$\mathrm{H} \%$	$\mathrm{~N} \%$
Calcd.	61.36	4.57	15.90
Found.	61.62	4.11	15.90

RESULTS AND DISCUSSION

Reaction of methyl anthranilate with ethyl and phenyl isocyanate in THF gave methyl 2-(3-ethyl and 3-phenylureido) benzoate ${ }^{16}$ which upon treatment with aqueous solution of 10% NaOH in ethanol and stirring over night at room temperature then acidified with HCl , the 3 -ethyl and 3 -phenyl- 2,4 - $(1 \mathrm{H}, 3 \mathrm{H})$ quinazolinediones ${ }^{16} \mathbf{I} ; 1,2$ were obtained. The latter when treated with NaH in THF afforded the corresponding sodium salt $\mathbf{I I} ; \mathbf{1}_{1,2}$ in good yields ${ }^{17}$ which upon reaction with alkyl chloroacetates or propionates afforded the alkyl 1-[3-ethyl and 3 -phenyl-2,4-($1 \mathrm{H}, 3 \mathrm{H}$)-quinazolinedione] acetates III; ${ }_{1-10}$ and ethyl 1-[3-phenyl-2,4-($1 \mathrm{H}, 3 \mathrm{H}$)-quinazolinedione] propionate IV. The IR spectra of compounds III; ${ }_{1}$. 10 are characterized by the appearance of an ester carbonyl band at $1726-1716 \mathrm{~cm}^{-1}$, the carbonyl bands of quinazolinediones nucleus appeared at $1658 \mathrm{~cm}^{-1}$ and $1606 \mathrm{~cm}^{-1},{ }^{1} \mathrm{HNMR}$ spectra of these compounds were characterized by the presence of a deshielded methylene group at $\delta 4.87-5.02 \mathrm{ppm}$. Reaction of the sodium salt $\mathbf{I I} ;{ }_{2}$ with chloroacetanilides in DMF afforded 1-arylaminocarbonylmethyl-3-phenyl-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-quinazolinediones $\quad \mathbf{V}$;1-4. The ${ }^{1}$ HNMR spectra of these compounds showed singlet of 2 H due to metylene group at $\delta 4.86-5.02 \mathrm{ppm}$ and another singlet of 1 H due to NH group at $\delta 8.00-10.35 \mathrm{ppm}$. Hydrazinolysis of the ester compounds III; ${ }_{2,7}$ in ethyl acohol by heating for 30 min . afforded the acetic acid hydrazids VI; 1,2 . The IR spectra of such compounds revealed the amide NH
stretching at $3210,3330 \mathrm{~cm}^{-1} . \mathrm{IR},{ }^{1} \mathrm{HNMR}$ and Ms of these compounds are presented in Table (3). Reaction of the hydrazides $\mathbf{V I} \mathbf{;}_{1,2}$ with the appropriate aromatic aldehydes in ethanol gave the arylidenes VII; 1.4. $^{\text {. The IR spectra of such }}$ compounds showed bands at $3293 \mathrm{~cm}^{-1}, 1694$ $\mathrm{cm}^{-1}, 1671 \mathrm{~cm}^{-1}$ for NH and carbonyl absorption bands respectively. ${ }^{1}$ HNMR spectra are characterized by the presence of deshielded- CH_{2} - group which ranged from δ 5.33-5.35 ppm. The pyrazole derivatives VIII; $\mathbf{1}_{1,2}$ was obtained from the reaction of acetylacetone with the acetic acid hydrazides VII; $;_{1,2}$ in ethanol. The ${ }^{1}$ HNMR spectrum of compound VIII; ${ }_{1}$ showed two singlet signals of two methyl groups at C_{3} and C_{5} of the pyrazole ring at $\delta 2.28$ and $\delta 2.51 \mathrm{ppm}$. The singlet signal of the pyrazole proton at 4-position appeared at 6.31 ppm , the singlet of 2 H of methylene group at $\delta 5.69 \mathrm{ppm}$. The mass spectrum of compound VIII; ${ }_{2}$ was recorded in Table (3). Reaction of the acetic acid hydrazide $\mathbf{V I} \mathbf{F}_{1,2}$ with isatin and naphthalic anhydride in ethanol afforded compounds IX and \mathbf{X} respectively. The mass spectra of these compounds are showed in Table (3). Reaction of the hydrazide $\mathbf{V I} \mathbf{1}_{1,2}$ with acetic anhydride afforded the acetyl derivatives $\mathbf{X I} ; 1,2$. The IR spectra of these compounds showed strong bands at 3202 or $3207 \mathrm{~cm}^{-1}, 1708-1711 \mathrm{~cm}^{-1}$ for NH and carbonyl absorption respectively. The ${ }^{1}$ HNMR of the compounds $\mathbf{X I} ; 1,2$ showed the two singlet signals of the two NH protons at δ 9.88 and $\delta 10.20 \mathrm{ppm}$ for the compound $\mathbf{X I} ;$ and at $\delta 9.88$ and at $\delta 10.19 \mathrm{ppm}$ for the compound $\mathbf{X I} ;{ }_{2}$.

Pharmacological testing

The anticonvulsant activity ${ }^{18,19}$

The method reported by Soaje-Echague and Lim^{18} was adopted to assess the anticonvulsant activity of the tested compounds and the reference drug in mice.

Thus each of three graded doses for each tested compound as well as for phenobarbitone was injected intraperitoneal to a group of animals. One hour later, the animals were injected subcutaneously with a dose of 100 $\mathrm{mg} / \mathrm{kg}$ of pentylentetrazole. The animals were observed for further one hour. The animal that showed no clonic seizures during a 60 -minute

Table 3: Spectral data of the new compounds (III-XI).

No.	IR (cm^{-1}), ${ }^{1} \mathrm{HNMR}(\delta, \mathrm{ppm})$, Mass ($\mathrm{m} / \mathrm{z}, \%$), J (Hz)	
III_{1}	IR ${ }^{1} \mathrm{HNMR}^{2} \mathrm{CDCl}_{3}$	2964 (CH aliphatic), 1734 (carbonyl of ester), 1676, 1608 (two carbonyls of quinazolinedione nucleus) $1.29\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=7.08 \mathrm{~Hz}\right), 4.16\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=7.02 \mathrm{~Hz}\right)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}^{2} \mathrm{CH}_{2}-\mathrm{CO}\right), 6.95(\mathrm{~d}, 1 \mathrm{H}$, aromatic proton at $\left.\mathrm{C}_{8}, \mathrm{~J}=8.32 \mathrm{~Hz}\right), 7.26\left(\mathrm{t}, 1 \mathrm{H}\right.$, aromatic proton at $\left.\mathrm{C}_{6}, \mathrm{~J}=7.48 \mathrm{~Hz}\right), 7.63(\mathrm{t}$, 1 H , aromatic proton at $\mathrm{C}_{7}, \mathrm{~J}=7.34 \mathrm{~Hz}$), $8.26\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic proton at C_{5}, $\mathrm{J}=6.42 \mathrm{~Hz}$).
III_{2}	$\begin{gathered} \hline \text { IR } \\ { }^{1} \mathrm{HNMR}^{2} \\ \mathrm{CDCl}_{3} \end{gathered}$	2964 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of quinazolinedione nucleus) 1.30 (doublet of triplet, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), 4.23 (doublet of quartet, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $4.90\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}^{2}-\mathrm{CH}_{2}\right), 6.95\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic proton at $\left.\mathrm{C}_{8}, \mathrm{~J}=8.54 \mathrm{~Hz}\right), 7.27$ $\left(\mathrm{t}, 1 \mathrm{H}\right.$, aromatic proton at $\left.\mathrm{C}_{6}, \mathrm{~J}=7.34 \mathrm{~Hz}\right), 7.65\left(\mathrm{t} 1 \mathrm{H}\right.$, aromatic proton at C_{7}, $\mathrm{J}=1.78 \mathrm{~Hz}), 8.29\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic proton at $\mathrm{C}_{5}, \mathrm{~J}=6.38 \mathrm{~Hz}$).
III_{3}	$\begin{gathered} \hline \text { IR } \\ \\ { }^{1} \mathrm{HNMR}^{2} \\ \mathrm{CDCl}_{3} \end{gathered}$	2972 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of quinazolinedione nucleus) $0.90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=5.06 \mathrm{~Hz}\right), 1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N} \mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=5.06\right.$ Hz), $1.66\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=5.06 \mathrm{~Hz}\right), 4.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}^{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{OCH}_{2}-\mathrm{CH}_{2}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{COO}\right), 6.95\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic at $\mathrm{C}_{8}, \mathrm{~J}=8.00$ $\mathrm{Hz}), 7.26\left(\mathrm{t}, 2 \mathrm{H}\right.$, aromatic $\left.\mathrm{C}_{6}, \mathrm{~J}=6.06 \mathrm{~Hz}\right), 7.64\left(\mathrm{t}, 1 \mathrm{H}\right.$, aromatic at $\mathrm{C}_{7}, \mathrm{~J}=$ 1.20 Hz), 8.26 (d, 1 H , aromatic $\mathrm{C}_{5}, \mathrm{~J}=5.20 \mathrm{~Hz}$).
III_{4}	$\begin{gathered} \text { IR } \\ { }^{1} \mathrm{HNMR}^{2} \\ \mathrm{CDCl}_{3} \end{gathered}$	2972 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1656 (two carbonyls of quinazolinedione nucleus) 1.33-1.24 (m, 9H, $2 \mathrm{CH}_{3}$ of $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and CH_{3} of $\left.\mathrm{C}_{2} \mathrm{H}_{5}\right), 4.19(\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CO}\right), 5.10\left(\mathrm{~m}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 6.95(\mathrm{~d}, 1 \mathrm{H}$, aromatic proton at $\left.\mathrm{C}_{8}, \mathrm{~J}=6.24 \mathrm{~Hz}\right), 7.29\left(\mathrm{t}, 1 \mathrm{H}\right.$, aromatic proton at $\mathrm{C}_{6}, \mathrm{~J}=$ $8.24 \mathrm{~Hz}), 7.63\left(\mathrm{t} 1 \mathrm{H}\right.$, aromatic proton at $\left.\mathrm{C}_{7}, \mathrm{~J}=7.20 \mathrm{~Hz}\right), 8.26(\mathrm{~d}, 1 \mathrm{H}$, aromatic proton at $\mathrm{C}_{5}, \mathrm{~J}=6.54 \mathrm{~Hz}$).
III_{5}	$\begin{gathered} \hline \text { IR } \\ { }^{1} \mathrm{HNMR}^{2} \\ \mathrm{CDCl}_{3} \end{gathered}$	2966 (CH aliphatic), 1732 (carbonyl of ester), 1702, 1654 (two carbonyls of quinazolinedione nucleus) $0.88\left(\mathrm{~d}, 6 \mathrm{H}\right.$, of $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=5.60 \mathrm{~Hz}\right), 1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=5.60\right.$ $\mathrm{Hz}), 1.91\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.97\left(\mathrm{~d}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}, \mathrm{J}=5.60 \mathrm{~Hz}\right), 4.17$ $\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=5.60 \mathrm{~Hz}\right), 4.92\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{COOCH}_{2}\right) ., 6.97(\mathrm{~d}, 1 \mathrm{H}$, aromatic at $\left.\mathrm{C}_{8}, \mathrm{~J}=6.80 \mathrm{~Hz}\right), 7.26\left(\mathrm{t}, 1 \mathrm{H}\right.$, aromatic at $\left.\mathrm{C}_{6}, \mathrm{~J}=1.20 \mathrm{~Hz}\right), 7.63(\mathrm{t}$, 1 H , aromatic at $\left.\mathrm{C}_{7}, \mathrm{~J}=6.00 \mathrm{~Hz}\right), 8.26\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic at $\left.\mathrm{C}_{5}, \mathrm{~J}=6.04 \mathrm{~Hz}\right)$.
III_{6}	IR ${ }^{1} \mathrm{HNMR}^{\mathrm{CDCl}}{ }_{3}$ ${ }^{2} \mathrm{CNP}$	3068 (CH aliphatic), 1728 (carbonyl of ester), 1662, 1602 (two carbonyls of quinazolinedione nucleus) $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}\right), 7.01-8.31(\mathrm{M}, 9 \mathrm{H}$, aromatic protons).
III_{7}	${ }^{1} \mathrm{HNMR}$ CDCl_{3}	$\begin{array}{\|l} \hline 1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=7.16 \mathrm{~Hz}\right), 4.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=7.12 \mathrm{~Hz}\right), \\ 4.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CO}\right), 7.01-8.30(\mathrm{~m}, 9 \mathrm{H}, \text { aromatic protons }) \end{array}$
III_{8}	$\begin{gathered} { }^{1} \mathrm{HNMR} \\ \text { (Acetone- } \mathrm{d}_{6} \text {) } \end{gathered}$	$0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=5.20 \mathrm{~Hz}\right), 1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 4.12(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}, \mathrm{~J}=5.60 \mathrm{~Hz}\right), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}\right), 7.32-8.17(\mathrm{~m}, 9 \mathrm{H}$, aromatic protons)
III,	IR ${ }^{1}$ HNMR CDCl_{3}	2972 (CH aliphatic), 1730 (carbonyl of ester), 1710, 1668 (two carbonyls of quinazolinedione nucleus) $1.28\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=6.24 \mathrm{~Hz}\right), 4.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}\right), 5.18(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.00-8.30(\mathrm{~m}, 9 \mathrm{H}$, aromatic protons).

Table 3: Continued.

No.	IR (cm^{-1}), ${ }^{1} \mathrm{HNMR}(\delta, \mathrm{ppm})$, Mass (m/z, \%), J (Hz)	
III_{10}	IR ${ }^{1}$ HNMR Acetone	2970 (CH aliphatic), 1738 (carbonyl of ester), 1712, 1666 (two carbonyls of quinazolinedione nucleus) $0.89\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=6.80 \mathrm{~Hz}\right), 1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.95(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{COOCH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=4.80 \mathrm{~Hz}\right), 5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 7.32-8.17(\mathrm{~m}$, 9 H , aromatic protons).
IV	$\overline{\mathrm{IR}}$ ${ }^{1}$ HNMR CDCl_{3}	2972 (CH aliphatic), 1734 (carbonyl of ester), 1710, 1668 (two carbonyls of quinazolinedione nucleus) $1.25\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=7.06 \mathrm{~Hz}\right), 4.18\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=7.12 \mathrm{~Hz}\right)$, $2.80\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{~J}=7.82 \mathrm{~Hz}\right), 4.48\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{J}=7.62 \mathrm{~Hz}\right)$, 7.26-8.31 ($\mathrm{m}, 10 \mathrm{H}$, aromatic protons) and CDCl_{3} protons.
\mathbf{V}_{1}	$\overline{\mathrm{IR}}$ ${ }^{1}$ HNMR DMSO- d_{6}	3272 (NH amidic), 1710 (amidic carbonyl) 1662, 1602 (two carbonyl of quinazolinedione nucleus) 5.01 (s, 2H, N-CH2CO), 7.04-8.14 (m, 14H, aromatic protons), $10.35(\mathrm{~s}, 1 \mathrm{H}$, NH).
V	$\begin{aligned} & { }^{1} \mathrm{HNMR}^{2} \\ & \mathrm{CDCl}_{3} \end{aligned}$	$2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3}\right), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CO}\right), 7.09-8.28(\mathrm{~m}, 15 \mathrm{H}, 12,$ aromatic protons, NH and CDCl_{3}).
V_{2}	Ms	$\begin{aligned} & \mathrm{M} / \mathrm{z} 385\left(\mathrm{M}+, \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}, 5.84 \%\right), 2.79\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 56.60 \%\right), 132 \\ & \left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}, 100 \% \text { base }\right) \end{aligned}$
\mathbf{V}_{3}	${ }^{1}$ HNMR CDCl_{3}	$3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{OCH}_{3}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{CO}\right), 6.65-8.33(\mathrm{~m}, 15 \mathrm{H}, 12$ aromatic protons, NH and CDCl_{3}).
\mathbf{V}_{4}	IR Ms	3272 (NH aliphatic), 3286 (NH, amidic), 1710 (amidic carbonyl), 1664, 1608 (two ketonic carbonyl of quinazolinedione nucleus) M/z 451, 499 ($\mathrm{M}, \mathrm{M}^{+2}, 1.37,1.30 \%$ respectively), 279 (M 96.21\%), 132 ($\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}, 100 \%$ base)
VI ${ }_{1}$	IR ${ }^{1} \mathrm{HNMR}$ CDCl_{3} Ms	3328 (NH amidic), $3294\left(\mathrm{NH}_{2}\right), 1700,1666$ and 1608 (carbonyl groups) $1.29\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=6.00 \mathrm{~Hz}\right), 4.17\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=6.00 \mathrm{~Hz}\right)$, $3.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 7.30\left(\mathrm{t}, 1 \mathrm{H}\right.$, aromatic at $\mathrm{C}_{8}, \mathrm{~J}=$ $9.60 \mathrm{~Hz}), 7.36\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic at $\left.\mathrm{C}_{6}, \mathrm{~J}=6.80 \mathrm{~Hz}\right), 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.69(\mathrm{t}$, 1 H , aromatic at $\left.\mathrm{C}_{7}, \mathrm{~J}=1.20 \mathrm{~Hz}\right), 8.25\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic at $\left.\mathrm{C}_{5}, \mathrm{~J}=5.20 \mathrm{~Hz}\right)$. $\mathrm{M} / \mathrm{z} 262\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}, 1.09 \%\right)$, $231\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 42.9 \%\right)$, $203\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}, 20.35\right), 132\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}, 100 \%\right.$ base)
VI2	$\begin{gathered} \hline \text { 1HNMR } \\ \text { CDCl3 } \\ \mathrm{Ms} \end{gathered}$	3.80 (s, 2H, NH2), 4.93 (s, 2H, NCH2CO), 7.04-8.29 (m, 11H, 9 aromatic protons, 1 H for NH and CDCl 3). M/z 310 (M+, C16H14N4O3, 0.9\%), 279 (C16H11N2O3, 38.21\%), 132 (C8H6NO, 100% base).
VII1	IR Ms	3194 (NH amidic), 1736 (amidic carbonyl), 1676, 1608 (two ketonic carbonyls of quinazolinedione nucleus) $\mathrm{M} / \mathrm{z} 350(\mathrm{M}+, \mathrm{C} 19 \mathrm{H} 16 \mathrm{~N} 4 \mathrm{O} 3,1.34 \%), 231(\mathrm{C} 12 \mathrm{H} 11 \mathrm{~N} 2 \mathrm{O} 3,57.26 \%), 132$ $(\mathrm{C} 8 \mathrm{H} 6 \mathrm{NO}, 100 \% \text { base })$
VII2	$\begin{gathered} \text { IR } \\ \text { 1HNMR } \\ \text { DMSO-d6 } \end{gathered}$	3061 (CH aliphatic), 1713, 1667, 1607 (carbonyls of quinazolinedione and CH2CO) 1.19 (t, 3H, CH2-CH3, J=5.60 Hz), 2.36 (s, 3H, p-CH3), 4.02 (q, 2H, CH2$\mathrm{CH} 3, \mathrm{~J}=5.60 \mathrm{~Hz}), 5.33(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH} 2 \mathrm{CO}), 7.25-8.21(\mathrm{~m}, 9 \mathrm{H}$, aromatic protons (8) and $\mathrm{N}=\mathrm{CH}-\mathrm{Ph}$), 11.69 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$)
VII3	IR Ms	3331 (NH), 3079 (CH aliphatic), 1713, 1660, 1603 (carbonyls of quinazolinedione and amide side chain) $\begin{aligned} & \mathrm{M} / \mathrm{z} 356(\mathrm{M}+\mathrm{C} 17 \mathrm{H} 16 \mathrm{~N} 4 \mathrm{O} 3 \mathrm{~S}, 1.84 \%), 132(\mathrm{C} 8 \mathrm{H} 6 \mathrm{NO}, 70.10 \%), 69 \text { (base, } \\ & 100 \%) . \end{aligned}$

Table 3: Continued.

No.	IR (cm^{-1}), ${ }^{1} \mathrm{HNMR}(\delta, \mathrm{ppm})$, Mass ($\mathrm{m} / \mathrm{z}, \%$), J (Hz)	
VII_{4}	IR Ms	3219 (NH), 2922 (CH aliphatic), 1703, 1666, 1906 (carbonyls of quinazolinedione and amide side chain). $\mathrm{M} / \mathrm{z} 400\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}, 3.65 \%\right.$), M/e $231\left(, \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 46.08 \%\right)$, M/e $132\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}, 100 \%\right.$ base).
VIII ${ }_{1}$	$\begin{gathered} \text { HNMR } \\ \text { DMSO-d }_{6} \end{gathered}$	$1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=13.28 \mathrm{~Hz}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at 3 -position of pyrazole group), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at 5 -position of pyrazole group), 4.02 (q, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.02 \mathrm{~Hz}$), $5.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ at C_{4} of pyrazole ring).
VIII ${ }_{2}$	IR Ms	3061 (CH aliphaatic). 1713, 1667, 1607 (carbonyls of quinazolinedione and $\mathrm{CH}_{2} \mathrm{CO}$). $\mathrm{M} / \mathrm{z} 374\left(\mathrm{M}^{+}, \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}, 0.9 \%\right), 278\left(\mathrm{M}^{-1}, \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 100\right.$ base $)$, M/e, $132\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}, 43.1 \%\right.$ base).
IX	IR Ms	3253 (NH), 2973 (CH aliphatic), 1691, 1651, 1616 (carbonyls of quinazolinedione and isatine group) $\mathrm{M} / \mathrm{z} 391\left(\mathrm{M}^{+}, \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}, 0.7 \%\right), 231\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 95.5 \%\right) 132\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}\right.$, 100% base)
X	IR Ms	3307 (NH), 1705 (CONH), 1668, 1608, 1586 (carbonyls of quinazolinedione and diphenimide groups) $\begin{aligned} & \begin{array}{l} \mathrm{M} / \mathrm{z} 442\left(\mathrm{M}^{+}, \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}, 1.6 \%\right), 231\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 97.1 \%\right), 132\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO},\right. \\ 100 \% \text { base }) \end{array} \\ & \hline \end{aligned}$
$\mathbf{X I}$	IR NMR DMSO-d $_{6}$	3202 (NH), 3058 (CH aliphatic), 1708, 1671, 1608 (carbonyls of quinazolinedione and amide moiety). $1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~J}=1.46 \mathrm{~Hz}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.01(\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=5.42 \mathrm{~Hz}\right), 4.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}\right), 7.21-8.10(\mathrm{~m}, 4 \mathrm{H}$, aromatic protons), 9.89 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$), $10.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO})$
XI_{2}	$\begin{gathered} \text { IR } \\ \text { NMR } \\ \text { DMSO-d }_{6} \\ \hline \hline \end{gathered}$	3207 (NH), 3059 (CH aliphatic), 1711, 1667, 1612 (carbonyl of quinazoline-dione and amide moiety) $1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCOCH}_{3}\right), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}\right), 7.30-8.12$ (m, 9H, aromatic protons), $9.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 10.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCOCH}_{3}\right)$.

period was considered protected against pentylenetetrazole-induced convulsion. The number of protected animals in each group was recorded. The percent of protection as well as the medium effective dose $\left(\mathrm{ED}_{50}\right)$ and the reltative potency of the tested compounds to the reference drug were calculated as presented in Table 4.

Conclusion

From the data recorded in Table (4), it was shown that most of the tested compounds exhibited low effect as anticonvulsant compared with phenobarbitone as shown in Fig. (1). The lower effect is due to the change of the position of ester moiety from 3-position into the 1 -position of $2,4(1 \mathrm{H}, 3 \mathrm{H})$ quinazolinedione when comparing with compounds containing ester moiety at 3position. ${ }^{3,13-15}$

Fig. 1: Anticonvulsant activity of tested compounds against Phenobarbital as standard drug on mice

- Data were represented as mean \pm standard deviation ($\mathrm{M} \pm \mathrm{SD}$).
- Statistical analysis were carried out using instat 2 soft ware program, one way analysis of variance (ANOVA) test was used as statistical test followed by Tukey-Kramer as post ANOVA test for comparison between groups.
- a: indicates significant different from Phenobarbiton sodium at $\mathrm{p}<0.001$.

Table 4: Anticonvulsant effect of some of the synthesized compounds and phenobarbitone sodium as reference compound.

Comp. No	Dose $\mathrm{mg} / \mathrm{kg}$	No. of mice Injected	No. of mice protected	Protection \%	$\begin{gathered} \mathrm{ED}_{50} \mathrm{Mg} / \mathrm{kg} \\ \mathrm{mmol} / \mathrm{L} \end{gathered}$	Relative potency $\mathrm{X} \pm \mathrm{SD}$
III ${ }_{1}$	$\begin{gathered} 50 \\ 100 \\ 150 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} \hline 33.3 \\ 83.3 \\ 100 \\ \hline \end{array}$	$\begin{gathered} 66.7 \\ (0.254) \end{gathered}$	$0.01 \pm 0.01^{\text {a }}$
III_{2}	$\begin{gathered} \hline 50 \\ 100 \\ 150 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 50 \\ 83.3 \\ 100 \end{gathered}$	$\begin{gathered} 44.5 \\ (0.161) \end{gathered}$	$0.155 \pm 0.05^{\text {a }}$
III_{3}	$\begin{gathered} \hline 50 \\ 100 \\ 150 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16.6 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 86.7 \\ (0.298) \end{gathered}$	$0.08 \pm 0.02^{\text {a }}$
III_{5}	$\begin{gathered} \hline 50 \\ 100 \\ 150 \\ \hline \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 16.6 \\ 83.3 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 86.7 \\ (0.284) \end{gathered}$	$0.088 \pm 0.017^{\text {a }}$
III6	$\begin{gathered} \hline 50 \\ 75 \\ 125 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 33.3 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 63.9 \\ (0.205) \end{gathered}$	$0.124 \pm .0 .03^{\text {a }}$
III_{7}	$\begin{gathered} 50 \\ 75 \\ 125 \\ \hline \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 33.3 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 63.9 \\ (0.198) \end{gathered}$	$0.126 \pm 0.028^{\text {a }}$
III_{8}	$\begin{gathered} 50 \\ 75 \\ 125 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.3 \\ & 83.3 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} 55.9 \\ (0.145) \end{gathered}$	$0.172 \pm 0.06^{\text {a }}$
III_{10}	$\begin{gathered} 50 \\ 75 \\ 125 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 4 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16.6 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 72.77 \\ (0.206) \end{gathered}$	$0.121 \pm 0.04^{\text {a }}$
IV	$\begin{aligned} & \hline 100 \\ & 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 33.3 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 125.3 \\ & (0.37) \end{aligned}$	$0.067 \pm 0.02^{\text {a }}$
V_{1}	$\begin{aligned} & \hline 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 4 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16.6 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 273.5 \\ (0.736) \end{gathered}$	$0.033 \pm 0.01^{\text {a }}$
VII ${ }_{1}$	$\begin{aligned} & \hline 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 4 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16.6 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 273.5 \\ (0.731) \end{gathered}$	$0.034 \pm 0.01^{\text {a }}$
VIII_{1}	$\begin{aligned} & \hline 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 33.3 \\ 83.3 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 233.43 \\ & (0.666) \end{aligned}$	$0.037 \pm 0.01^{\text {a }}$
X	$\begin{aligned} & \hline 200 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} 16.6 \\ 66.6 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 273.5 \\ (0.618) \end{gathered}$	$0.04 \pm 0.009^{\text {a }}$
Phenob.	$\begin{gathered} 3.25 \\ 6.25 \\ 12.50 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 6 \end{aligned}$	$\begin{gathered} 33.33 \\ 50 \\ 150 \end{gathered}$	$\begin{gathered} 6.25 \\ (0.025) \end{gathered}$	1 ± 0.15

Relative potency $=\frac{\text { ED50 of S. }}{\text { ED50 of T. }}$
a: Indicate significant deferent from Phenobarbiton sodium at $\mathrm{p}<0.001$.

Acknowledgement

Very thanks to Dr. Mohamed F. Abd Ellah lecturer at Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. for his valuable help in the phamacological testing of the synthesized compounds in this work.

REFERENCES

1- M. A. Aziza, F. M. Salama, M. A. Amin and A.G.A. El-Helby, Az. J. Pharm. Sci, 9, 63-74 (1992).
2- S. E. S. Barakat, M. A. El-Zahabi and M. F. Radowan, Az. J. Pharm. Sci, 23, 36-45 (1999).

3- A. A. El-Helby, S. E. S. Barakat and S. G. Abdel Hamide, Az. J. Pharm. Sci., 23, 2534(1999).
4- M. El-Sadek, M. M. Baraka, S. M. Mostafa and M. Kh. Soltan, Egypt. J. Pharm. Sci., 44 (1), 87-99 (2003).
5- M. Y. Ebeid, M. A. S. Amin, El-Sayed S. Barakat, M. K. Ibrahim, A. G. A. El-Helby and H. M. Saker, Saudi Pharm. J., 6 (2) (1998).

6- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamid, Pakistan J. Biol. Sci., 7 (7), 1268 (2004).

7- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamid, J. Biol. Sci., 4 (4), 504-509 (2004).
8- M. A. Al-Omar, S. G. Abdel-Hamide, H. A. Al-Khamees and H. I. El-Subbagh , Saudi Pharm. J., 12 (2), 63-71 (2004).

9- S. M. Mosaad, K. I. Mohammed, M. A. Ahmed and S. G. Abdel-Hamide, J. Appl. Sci., 4 (2), 302-307 (2004).
10- T. W. Butler, A. F. J. Fliri, R. J. Gallaschun, B. P. Jones and J. A. Ragan, Eur, Pat,. Appl. Epl, 083, 178 (Cl. Co7D 498104). 14 Mar 2001, Us. Appl. Pv, 151, 725, 31, 1999 (Eng) Through C. A. Vol. 134, 222727s (2001).
11- J. Heinicke, U. Klausmeier, C. Arkona and S. leistner, Ger.; DE 10,101, 324. (Cl. Co7D239/96) 13 Dec. 2001 Appl. 10, 101, 324, 13 Jan., 2001, 8 pp (Ger). Through C. A. 138, 20086n (2002).

12- H. Kakuta, A. Tanatani, K. Nagasawa and Y. Hashimoto, Chem. Pharm. Bull., 51 (11), 1273-1282 (2003).

13- A. R E. N. Ossman, A. G. N. Osman and A. G. A. El-Helby, Bull. Pharm. Sci., Assiut Univ., 9 (1) 105 (1986).
14- A. G. A. El-Helby, Bull. Pharm. Sci., Assiut Univ., 118 (2), 69-78 (1995).
15- A. G. A. El-Helby, Egypt J. Pharm. Sci., 36 (1-6), 287-296 (1995).
16- E. P. Papadopoulos and C. D. Torres, J. Heterocyclic Chem., 19, 269 (1982).
17- N. P. Peet and S. Sunder, J. Org. Chem., 40, 13, 1909-1914 (1975).
18- E. Soaje-Echaque and R. K. S. Lim, J. Pharmacol. Exp. Ther., 138, 224 (1962).
19- R. A. Turner, "Screening Methods in Pharmacology", Academic Press, INC London LTD, London, New York, 1955, pp.(a) 69 (b) 164.

