SYNTHESIS AND ANTIHYPERLIPIDEMIC ACTIVITY OF CERTAIN NICOTINIC ACID DERIVATIVES

Abdel Ghany A. El-Helby and Mohamed H. Abdel-Wahab*

Departments of Pharmaceutical Chemistry, and (Pharmacology and Toxicology)*, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

تم فى هذا البحث تشييد بعض المركبات الجديدة من نواة البيريدون (نيكونتيك اسد) وتم أثبات التركيب البنائى للمركبات المشيدة بالتحاليل الدقيقة للعناصر والأشعة دون الحمراء والرنين النووى المغناطيسى ومطياف الكتلة وقد تم عمل الإختبار البيولوجى على الفئران لبعض المركبات المشيدة كمخفضات للدهون (الكلوستيرول والتراجلسرايد والدهون ذات الكثافة العالية HDL والدهون ذات الكثافة المنخفضة LDL) فوجد أن للمركبات فاعلية عالية جدا فى تخفيض نسبة الدهون الضارة (LDL) دون أى تأثير على الدهون ذات الكثافة العالية والتى تحمى القلب وهذا بالموديل

3-Ethoxycarbonyl-4,6-dimethyl-2(1H)-pyridone **I** was prepared and converted to the corresponding sodium salt **II**. The latter reacted with certain chloroacetanilides to afford the corresponding ethers **III**. In addition 3-cyano-4,6-dimethyl-2(1H)-pyridone **IV** was prepared and converted to the corresponding potassium salt **V** which was allowed to react with α -chloroacetyl and β -chloropropionyl derivatives of certain aromatic amines to afford **VI**. Furthermore, **IV** was converted to 3-cyano-4,6-dimethyl pyridine-2-thione **IX**. Potassium salt of the latter upon reaction with α -chloroacetyl and β -chloropropionyl derivatives of some aromatic amines gave the expected thioethers **X**. Compounds **III**₂, **V**₄, **X**₁ and **X**₁₂ were selected for testing for antihyperlipidemic effect and revealed promising hypolipidemic effect on cholesterol, triglyceride, LDL and have no effect on HDL.

INTRODUCTION

Some new derivatives of nicotinonitrile and nicotinamide exhibited antihypertensive β adrenergic bloking activity.¹⁻³ Osman *et al.*⁴ synthesized some derivatives of 3-ethoxycarbonyl-4,6-dimethyl-2(1H)-pyridone and evaluated them as antihyperlipidemic agents. Consequently, it was decided to synthesize certain new nicotinic acid derivatives for evaluation as antihyperlipidemic agents aiming to avoid drawbacks of the nicotic acid itself.

EXPERIMENTAL

All meting points were carried out on Geriffin melting point apparatus and are uncorrected. Elemental analysis were performed on CHN analyzer at the Microanalytical unit, Cairo University, Cairo, Egypt. The IR spectra were recorded on a Pye Unicam SP-1000 IR spectrophotometer at Microanalytical Unit., Cairo University. ¹HNMR spectra were recorded on a Joel 200 MHz spectrometer at Faculty of Science, Cairo, University, Cairo, Egypt. And Inova 400 Cosy-Chem. buffalo edu. at the Natural Science Complexes, Buffalo, USA. Chemical values were expressed by δ values using TMS as internal standard. Mass spectra were performed on Hewlett Packard 5988 (70 ev) spectrometer at the Microanalytical Unit, Cairo, University.

The following non available intermediates were prepared according to reported procedures: 3-ethoxycarbonyl-4,6-dimethyl-2(1H)-pyridone $\mathbf{I}^{4,5}$ and its sodium salt \mathbf{II} ,^{4,5} 3cyano-4,6-dimethyl 2(1H) pyridone $\mathbf{IV}^{6,7}$ and its potassium salt,⁸ 2-chloro-3-cyano-4,6dimethyl-pyridone \mathbf{VII} ,^{4-7,9} chloroacetanilides and β -chloropropionoyl anilides.¹⁰

(III₁₋₇)

(III₁₋₇)

- H
 4-CH₃
 4-Cl
 2,6-dichloro
 4-Br
- 6) 2-CO₂CH₃
- 7) 4-COOCH₃

(n=1) (n=2) R = 1) H R = 8) 2,6-dichloro $2) 4-CH_3$ $4) 4-CH_3$ 4) 4-CI 5) 2,6-dichloro 6) 4-Br $7) 2-CO_2CH_3$

(X ₁ .	$_{8})(n = 1)$	(X ₉₋₁₂)(n =2)		
R =	1) H 2) 4-CH ₃ 3) 4-OCH ₃ 4) 4-Br 5) 4-Cl 6) 2,6-dichloro 7) 2-CO ₂ CH ₃ 8) 4-CO ₂ CH ₂	R =	9) H 10) 4-CH ₃ -Br 11) 4-Br 12) 2,6-dichloro	

Scheme 3

3-Ethoxycarbonyl-4,6-dimethyl-2substituted pyridines III₁₋₇

A mixture of 3-ethoxycarbonyl-4,6dimethyl-2-pyridone sodium salt II 2.17 g (0.01 mole), chloroacetanilides 1.7 g (0.01 mole) and dimethylformamide 20 ml was heated on waterbath for 3 hr, the reaction mixture was cooled, poured onto water. The solid so obtained was filtered, washed with water and crystallized from ethanol (Table 1).

Potassium salt of 3-cyano-4,6-dimethyl-2(1H)-pyridone V

3-Cyano-4,6-dimethyl-2(1H)-pyridone **IV** 1.48 g (0.01 mole) was treated with alcoholic solution of potassium hydroxide (0.01 mole) until dissolved, the solution was stirred for 30 min, the potassium salt of the target compound was separated as solid product, filtered, washed several times with absolute ethanol and then dried.

m.p, 265-6° as reported; Yield, 1.86 g (100%) as reported.⁸

3-Cyano-4,6-dimethyl-2-substituted pyridines VI₁₋₉

A mixture of potassium salt V 1.86 g (0.01 mole), α -chloroacetyl or β -chloropropionyl aromatic amines (0.01 mole) and dimethyl formamide (20 ml) was heated on water-bath for 3 hr, the reaction mixture was cooled, poured onto water, the precipitate was filtered, washed with water and recrystallized from ethanol (Table 2).

3-Cyano-4,6-dimethylpyridine-2-thione VIII

A mixture of 2-chloro-3-cyano-4,6dimethylpyridine **VII** 1.66 g (0.01 mole) and thiourea 1.52 g (0.02 mole) was heated under reflux in absolute ethanol (50 ml) for 4 hr. The formed yellow crystals was filtered while hot and washed with ethanol and crystallized from ethanol.

Analysis of C₈H₈N₂S, M.Wt., 164.23; m.p, 285-6°; yield 1.4 g (85%).

	C%	H%	N%
Calcd.	58.51	4.91	17.06
Found	58.32	5.00	16.95

Potassium 3-cyano-4,6-dimethylpyridine-2thiolate IX

3-Cyano-4,6-dimethylpyridine-2-thione VIII 1.64 g (0.01 mole) was dissolved in alcholic solution of KOH 0.056 g (0.01 mole) with stirring, the potassium salt of the target compound was immediately precipitated washed with ethanol then dried. m.p, 280-1°; yield, (2.02 g) 100%.

3-Cyano-4,6-dimethyl-2-(substitutedthio) pyridines X₁₋₁₂

A mixture of the potassium salt **IX** 2.02 g (0.01 mole) and α -chloroacetyl or β -chloropropionyl aromatic amines (0.01 mole) was heated on water-bath for 4 hr in DMF (20 ml). The reaction mixture was cooled, poured onto water, the solid so obtained was filtered and crystallized from ethanol (Table 3).

RESULT AND DISCUSSION

Condensation of acetylacetone and ethyl cyanoacetate in absolute ethanol containing triethylamine (TEA) afforded 3-ethoxycarbonyl-4,6-dimethyl-2(1H)-pyridone **I**.^{4,5} The latter upon reaction with NaOC₂H₅ afforded its sodium salt⁴ II. Reaction of II with certain chloroacetanilides afforded the corresponding ethers, ethyl 3-ethoxycarbonyl-4,6-dimethyl-2substitutedpyridines III₁₋₇. IR spectra of such compounds showed absorption at 1719-1735 cm⁻¹ and 3380 cm⁻¹ for the ester carbonyl and NH absorption bands respectively. The amide carbonyls of these compounds exhibited bands at 1643-1637 cm⁻¹. The ¹HNMR spectra showed the presence of methylene group at δ 4.88-4.92 ppm. The NH proton appeared at δ 9.65-10.20 ppm. Reaction of acetylacetone and cyanoacetamide in the presence of TEA afforded 3-cyano-4,6-dimethyl-2(1H)-pyridone IV, converted into which was the corresponding potassium salt V through the reaction with alcoholic KOH.8 The potassium salt \mathbf{V}^8 was allowed to react with α chloroacetyl and β -chloropropionyl derivatives of certain aromatic amines to afforded 3-cyano-4,6-dimethyl-2-substituted pyridines VI₁₋₉. IR spectra of such compounds showed the absorption band at 3270 cm⁻¹ for the NH

 Table 1: 3-Ethoxycarbonyl-4,6-dimethyl-2-substituted pyridines III₁₋₇.

Comp.	D	M D °	Yield	Molecular formula	Elemental analyses		
No.	K	IVI.F ,	%	M.Wt	%	Calcd.	Found
		140-1			С	65.84	66.10
III_1	Н		72	$C_{18}H_{20}N_2O_4$	Н	6.14	6.40
				528.50	Ν	8.53	8.56
				СНИО	С	66.65	66.30
III_2	4-CH ₃	165-6	75	$C_{19}\Pi_{22}N_2O_4$	Н	6.46	6.70
				542.57	Ν	8.18	8.13
					С	59.59	59.34
III ₃	4-(Cl)	195-6	71	362.81	Н	5.28	5.53
					Ν	7.72	7.63
	2,6-dichloro	159-61	67	$\begin{array}{c} C_{18}H_{18}Cl_2N_2O_4\\ 397.25 \end{array}$	С	54.42	54.10
III_4					Н	4.53	4.70
					Ν	7.05	6.95
	4-(Br)	248-50	70	$C_{18}H_{19}BrN_2O_4$	С	53.08	52.70
III ₅					Н	4.70	4.90
				407.20	Ν	6.88	6.82
				СНИО	С	62.17	62.17 61.80
III ₆	2-(CO ₂ CH ₃)	150-1	65	$C_{20} \Gamma_{22} \Gamma_{2} O_{6}$	Н	5.74	5.40
				300.40	Ν	7.25	7.13
		190-2	71	$\begin{array}{c} C_{20}H_{22}N_2O_6\\ 386.40\end{array}$	С	62.17	62.28
III ₇	4-(CO ₂ CH ₃)				Н	5.74	6.00
					Ν	7.25	7.15

 Table 2: 3-Cyano-4,6-dimethyl-2-substituted pyridines VI₁₋₉.

Comp.	P	n	MD°	Yield	eld Molecular formula		mental an	alyses
No.	K	11	IVI.I ,	%	M.Wt	%	Calcd.	Found
VI ₁	Н		229-30	80	$C_{16}H_{15}N_{3}O_{2}$	С	68.31	68.28
		1				Н	5.37	5.36
					201.51	Ν	14.94	14.88
						С	69.14	69.10
VI ₂	4-CH ₃	1	214-15	82	$C_{17}\Pi_{17}N_3O_2$	Н	5.80	5.72
					295.54	Ν	14.23	14.21
					СНИО	С	65.58	65.60
VI ₃	4-OCH ₃	1	219.20	81	$C_{17}\Pi_{17}\Pi_{3}O_{3}$	Н	5.50	5.63
					511.54	Ν	13.50	13.40
						С	60.86	60.98
VI ₄	4-(Cl)	1	170-1	75	315.75	Н	4.47	4.53
						Ν	13.31	13.25
					CHCINO	С	54.87	54.92
VI ₅	2,6-dichloro	1	319-20	76	350.20	Н	3.74	3.75
						Ν	12.00	11.88
	4-(Br)	:) 1	235-7	72	C ₁₆ H ₁₄ BrN ₃ O ₂ 360.20	С	53.35	53.13
VI ₆						Н	3.92	3.95
						Ν	11.67	11.56
					СНИО	С	14.2314.2165.5865.605.505.6313.5013.4060.8660.984.474.5313.3113.2554.8754.923.743.7512.0011.8853.3553.133.923.9511.6711.5663.7163.625.055.0312.3812.3056.0656.124.154.3211.5411.7554.5654.49	
VI ₇	$2-CO_2CH_3$	1	190-1	79	$C_{18}\Pi_{17}\Pi_{3}O_{4}$	Н	5.05	5.03
					559.55	Ν	12.38	12.30
				65		С	56.06	56.12
VI ₈	2,6-dichloro	2	269-71		$C_{17} I_{15} C_{12} I_{3} O_{2}$	Н	4.15	4.32
					504.25	Ν	11.54	11.75
					C ₁₇ H ₁₆ BrN ₃ O ₂ 374.23	С	54.56	54.49
VI9	4-(Br)	4-(Br) 2	2 200-2	62		Н	4.31	4.20
ý						Ν	11.23	11.31

Table 3: 3-Cyano-4,6-dimethyl -2-(substituted thio) pyridines $X_{1\mbox{-}12}.$

Comp.	P	n	MΡ°	Yield	Molecular formula	nula Elemental analy		alyses	
No.	K	11	IVI.I ,	%	M.Wt	%	Calcd.	Found	
					СНИО	С	64.62	64.35	
\mathbf{X}_1	Н	1	220-2	75	$C_{16}\Pi_{15}\Pi_{3}O_{2}$	Η	5.08	5.15	
					297.58	Ν	14.13	14.20	
					CHNOS	С	65.57	65.70	
\mathbf{X}_2	4-CH ₃	1	210-11	80	$C_{17}\Pi_{17}\Pi_{3}OS$	Η	5.50	5.59	
					511.40	Ν	13.49	13.40	
					CHN.O.S	С	62.36	62.01	
X ₃	$4-OCH_3$	1	265-6	77	327.48	Η	5.23	5.20	
					327.40	N	12.83	12.66	
					C. H. Br N.OS	С	51.07	50.85	
X4	4-(Br)	1	229-31	80	276 27	Η	3.75	3.84	
					570.27	Ν	11.17	11.18	
					C.H.CINOS	С	57.91	57.73	
X ₅	4-(Cl)	1	214-5	71	331.82	Η	4.25	4.22	
						Ν	12.66	12.55	
	2,6-dichloro	1	214-6		$\begin{array}{c} C_{16}H_{13}Cl_2N_3OS\\ 366.27 \end{array}$	С	52.47	52.49	
X ₆				81		Η	3.58	3.56	
						Ν	11.47	11.45	
				70	C ₁₈ H ₁₇ N ₃ O ₃ S 355.41	С	60.83	60.70	
X_7	$2-CO_2CH_3$	1	235-6			Η	4.82	4.60	
						N	11.82	11.75	
		1	214-5	67	C ₁₈ H ₁₇ N ₃ O ₃ S 355.41	С	60.83	61.05	
X ₈	$4-CO_2CH_3$					Η	4.82	4.90	
					555.11	N	11.82	11.75	
			140-1	65	C ₁₇ H ₁₇ N ₃ OS 311.40	С	65.57	65.46	
X9	Н	2				Н	5.50	5.41	
						N	13.49	13.52	
	e 1	-			$C_{18}H_{10}N_2OS$	C	66.43	66.45	
X ₁₀	CH ₃	2	120-1	61	325.43	H	5.88	5.72	
						N	12.91	12.88	
		(Br) 2	140-1		C ₁₇ H ₁₆ BrN ₃ OS 390.30	C	52.31	52.48	
X ₁₁	4-(Br)			62		H	4.13	4.11	
						N	10.77	10.89	
		5-dichloro 2	157-8	65	C ₁₇ H ₁₅ Cl ₂ N ₃ OS 380.20	C	53.69	53.61	
X ₁₂	2,6-dichloro					H	3.98	4.01	
						500.20	Ν	11.05	10.95

 Table 4: Spectral data of some new compounds (III-X).

Comp. No.		Spectral data IR (cm ⁻¹), ¹ HNMR (δ ppm.), Mass (m/z, %)
III ₁	IR	1639 (CONH), 1735 (COOC ₂ H ₅), 3276 (CONHPh)
	¹ HNMR	1.30 (t,3H, <u>CH₃-</u> CH ₂ -O-), 2.20 (S,3H,CH ₃ at 6- position), 2.45 (s, 3H, CH ₃ at
	(CDCl ₃)	4-position), 4.35 (q, 2H, CH ₃ - <u>CH₂</u> -O-), 4.90 (s, 2H,-o-CH ₂ CO), 6.05 (s,1H,
	1	CH at C ₅ -of pyridine), 7.00-7.50 (m, 5H, aromatic protons), 9.70 (s,1H,NH).
III ₃	¹ HNMR	1.35 (t,3H,CH ₃), 2.24 (s,3H, CH ₃ at-6-position), 2.51 (s,3H,CH ₃ at 4-
	$(CDCI_3)$	position), 4.83 (q, 2H, CH ₃ - <u>CH₂</u> -O-), 4.83 (s, 2H, OCH ₂ CO), 6.08 (s, 1H CH et C, of multiline) $7.17(1.2)$
		1H,CH at C ₅ -of pyridine), 7.17(d,2H, aromatic protons at C ₁ and C ₆), 7.38 (d 2H aromatic protons at C ₁ and C ₁) 9.62 (s 1H NH)
III.	IR	$(4, 211, atomatic protons at C_3 and C_5), 9.02 (s, 111, 1011).$
1114	¹ HNMR	1.26 (t 3H CH ₂ -CH ₂ -O ₂) 2.11 (s 3H CH ₂ at 6-position) 2.44 (s 3H CH ₂ at
	(acetone-d ₆)	4-position), 2.24 (a, 2H, CH ₃ -CH ₂ -O-), 5.01 (s,2H, OCH ₂ CO), 6.07 (s,1H,
	(CH at C ₅ -of pyridine), $7.33-7.48$ (m,3H, aromatic protons), 9.38 (s, 1H, NH).
III ₇	IR	1739, 1725 (COOC ₂ H ₅ , p-COOC ₂ H ₅), 1637 (CONH), 3280 (CONHPh).
	¹ HNMR	1.31 (t, 3H, <u>CH</u> ₃ -CH ₂ -O-), 2.25 (s, 3H, CH ₃ at 6-position), 2.48 (s, 3H, CH ₃
	(CDCl ₃)	at 4-position), 3.86 (s, 3H, p-OCH ₃), 3.35 (q,2H,- CH ₃ - <u>CH₂-O-), 4.91 (s,</u>
		2H,-OCH ₂ -CO), 6.10 (s, 1H, CH at C_5 -of pyridine), 7.44 (d, 2H, aromatic
		protons at C_2 and C_6), 7.80 (d, 2H, aromatic protons at C_3 and C_5), 10.03
		(s,1H, NH).
VI_1	¹ HNMR	2.36 (s,3H,CH ₃ at 6 position), 2.40 (s, 3H, CH ₃ at 4 position), 4.89 (s, 2H, CH_{3}
	$(DMSO-d_6)$	OCH_2CO , 6.38 (s, 1H,CH at C ₅ -of pyridine), 7.10 (t, 1H, aromatic proton at C4 of phonyl ring) 7.35 (t, 2H, aromatic protons at C , of phonyl ring)
		at C4-of phenyi filig), 7.55 (t, 2H, aromatic protons at $C_{2,5}$ -of phenyi filig), 7.60 (d 2H, aromatic protons at $C_{2,5}$ -of phenyi filig),
VI.	¹ HNMR	2.26 (s 3H CH ₂ at the p-position) 2.40 (d 6H 2CH ₂ at 6 and 4-positions)
V 12	$(DMSO-d_c)$	4.87 (s 2H -OCH ₂ CO) 6 38 (s 1H CH at C _z -of pyridine) 7 15 (d 2H at
	(B11150 d ₀)	$C_{3,5-}$ of the aromatic ring), 7.45 (d.2H at $C_{2,6-}$ of the aromatic ring), 10.26 (s.
		1H, NH).
VI ₃	¹ HNMR	2.35 (s, 3H,CH ₃ at 6 position), 2.39 (s,3H, CH ₃ at 4-position), 3.73 (s,3H,
	$(DMSO-d_6)$	OCH ₃ at p-position), 4.86 (s,2H, OCH ₂ CO), 6.37 (s,1H, CH at C ₅ -of
		pyridine), 6.90 (d,2H, at $C_{2,6}$ -aromatic protons), 7.50 (d, 2H, at $C_{3,5}$ -
		aromatic position), 10.31 (s,1H,NH).
VI ₄	¹ HNMR	2.43 (d, 6H, 2CH ₃ at 6, 4-positions), 4.94 (s, 2H, OCH ₂ CO), 6.17 (s, 1H, CH at C of analytic) 7.12.7 (0, (m, 5H) and CDC)
	$(CDCI_3)$	CH at C ₅ -of pyridine), $7.12-7.60$ (m,5H, aromatic protons and CDCl ₃ proton) 0.62 (c. 1H NH)
	Me	proton), 9.05 (S, 1H, NH). 315, 317 (M^+ M ± 4 , 3.00, 1.21%), 189 (m/e base 100%)
VI-	IR	1671 (CONHPh) 2217 (CN) 3195 (CONHPh)
VL	¹ HNMR	2.37 (s. 3H, CH ₂ at 6-position), 2.48 (s. 3H, CH ₂ at 4-position), 4.97 (s. 2H,
· -0	(acetone d_6)	OCH ₂ CO), 6.30 (s, 1H, CH at C ₅ - of pyridine), 7.47 (d, 2H, aromatic at C ₂
		and C ₆), 7.60 (d, 2H, aromatic C ₃ , C ₅), 9.65 (s, 1H, NH)
VI ₇	IR	1693 (COOCH ₃), 1647 (CONH), 2220 (CN), 3271 (CONHPh).
	¹ HNMR	2.43 (s,6H, 2CH ₃ at 6 and 4 positions), 3.92 (s,3H, o-COOCH ₃), 4.92(s,
	(CDCl ₃)	CH ₃ -O-CH ₂ -CO), 6.13 (s, 1H, CH at C ₅ - of pyridine), 7.10 (t, 1H, at C ₄ - of
		the phenyl ring), 7.25 (s, 1H of CDCl ₃), 7.50 (t, 1H, at C_5 - of phenyl ring),
		8.00 (d, 1H, at C_6 - of aromatic ring), 8.60 (d, 1H at C_3 - of phenyl ring),
X7T	ID	11.40 (S, 1H, NH).
V 1 ₈	IK ¹ linin/id	1001(CONH), 2210 (CN), 5242 (CONHPR). 2 35 (s. 3H, CH, at 6-position), 2 80 (s. 3H, CH, at 4 position), 2 05 (t. 2H
	(acetone d ₂)	$-CH_{2}CO(3, 511, C11_{3} \text{ at } 0^{-}\text{position}), 2.50(3, 511, C11_{3} \text{ at } 4^{-}\text{position}), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position}), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position})), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position})), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position})), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position})), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position})), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position}))), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position}))), 2.50(1, 2H, -CH_{2}CO(3, 511, C11_{3} \text{ at } 4^{-}\text{position})))))$
		7.31-7.49 (m, 3H, aromatic), 9.08 (s, 1H, NH).

Table 4: continued

Comp. No.		Spectral data IR (cm ⁻¹), ¹ HNMR (δ ppm.), Mass (m/z, %)
VI ₉	¹ HNMR (CDCl ₃)	2.30 (s, 3H, CH at 6-position), 2.51 (s, 3H, CH ₃ at 4-position), 2.81 (t, 2H, CH ₂ CO), 4.27 (t, 2H, OCH ₂), 6.00 (s, 1H, CH at C ₅ -of pyridine), 7.10-7.80 (m, 4-aromatic protons), 9.82 (s, 1H, NH).
VIII	IR	2216 (CN), 3356 (SH)
	¹ HNMR	2.35 (s, 6H, 2CH ₃ at 6.4 position), 6.69 (s, 1H, CH at C_5 -of pyridine), 13.80
	$(DMSO-d_6)$	(s, 1H, SH). $m/\pi 164 (M^+ 0.210/) M/\pi 55 (here 1000/)$
v		11/2 104 (M1, 9.21%), M/2 33 (base 100%).
$\mathbf{\Lambda}_1$	$(DMSO-d_{c})$	2.52 (s, 511, CH ₃ at 0-position), 2.81 (s, 511, CH ₃ at 4-position), 0.91 (s,211, s-CH ₂ CO) 6.98 (s, 1H -H of pyridine) 7.07-7.75 (m. 7H, aromatic protons
	(DNDO-06)	and -SCH ₂ -protons) 9.42 (s. 1H, NH)
X ₂	¹ HNMR	2.28 (s.3H, CH ₃ at p-position of aromatic ring), 2.52 (s. 3H, CH ₃ at 6-
2	$(DMSO-d_6)$	position), 2.75 (s, 3H, CH ₃ at 4-position), 6.95 (s, 2H, SCH ₂ CO), 7.05 (s,
	х о <i>л</i>	1H at 5-position), 7.15 (d, 2H aromatic protons at $C_{3,5}$), 7.58 (d, 2H,
		aromatic protons at $C_{2,6}$), 9.34 (s, 1H, NH).
X_4	IR	1643 (CONH), 3320 (NH), 3468 (SCH ₂)
	¹ HNMR	2.51 (s, 3H, CH ₃ at 6-position), 2.74 (s, 3H, CH ₃ at 4-positions), 3.42 (s, 2H,
	$(DMSO-d_6)$	SCH ₂ CO), 7.03 (s, 1H, CH of pyridine), 7.51 (d, 2H, at $C_{2,5}$ - of aromatic),
v		7.60 (d, 2H, at $C_{3,5}$ - of aromatic), 9.51 (s, 1H, NH).
Λ_4	$(CDCl_{a})$	2.00 (s, 5H, CH ₃ at 0-position), 2.70 (s, 5H, CH ₃ at 4-positions), 0.47 (s, 2H, SCH ₂ CO) 6.90 (s, 1H, CH of pyridine) 7.14 (s, 1H NH) 7.46-7.47 (m, 4H)
	(CDCI3)	aromatic protons)
X5	¹ HNMR	2.51 (s. 3H, CH ₂ at 6-position), 2.81 (s. 3H, CH ₂ , at 4-position), 6.93 (s. 2H,
5	(acetone d_6)	SCH ₂ CO), 7.03 (s, 1H, CH of pyridine), 7.32 (d, 2H, aromatic at C ₂ and
		C ₆), 7.78 (d, 2H, aromatic at C ₃ and C ₅), 8.74 (s, 1H, NH).
	Ms	331, 335 (M, M ⁺ 4, 3.00, 0.72% respectively), 218 (base 100%).
X ₇	IR	1699 (COOCH ₃), 1594 (CONH), 3319 (CONHPh), 3482 (SCH ₂).
	¹ HNMR	2.51 (s, 3H, CH ₃ at 6-position), 2.76 (s, 3H, CH ₃ at 4-position), 3.96 (s, 3H,
	$(DMSO-d_6)$	$0-CO_2CH_3$ of phenyl ring), 7.01 (s, 2H, SCH ₂ CO), 7.07 (s, 1H, CH of
		pyridine), 7.22 (t, 1H at C ₅ -of aromatic ring), 7.58 (t, 1H, at 4-aromatic position) 8.04 (d, 1H at C ₅ of the aromatic ring) 8.29 (d, 1H at C ₅
		aromatic position) 11.01 (s. 1H NH)
Xs	¹ HNMR	2.61 (s. 3H. CH ₃ , at 6-position), 2.77 (s. 3H. CH3 at 4-position), 3.91 (s.
0	(CDCl ₃)	3H, p-OCH ₃), 6.53 (s, 2H, SCH ₂ CO), 6.92 (s, 1H, CH of pyridine), 7.26 (s,
		1H, CDCl ₃), 7.28 (s, 1H, NH), 7.69 (d, 2H, aromatic at C ₂ and C ₆), 8.05 (d,
		2H, aromatic at C_3, C_5).
X9	IR	1662 (CONH), 2214 (CN), 3334 (CONHPh).
	¹ HNMR	2.42 (s, 3H, CH ₃ at 6-position), 2.15 (s, 3H, CH ₃ at 4-position), 2.81 (t, 2H, 2
	$(CDCI_3)$	SCH_2 , 3.61 (t, 2H, SCH ₂ CO), 6.79 (s, 1H, CH of pyridine), 7.10-7.49 (m, 711.5 superstance NIL and CDCL)
v		7H, 5-aromatic protons, NH and CDCl ₃).
Λ_{10}	$(CDCl_{a})$	2.29 (s, 5H, CH ₃ at 0-position), 2.39 (s, 5H, CH ₃ at 4-position), 2.49 (s, 5H, CH ₂ at p-position), 2.80 (t 2H SCH ₂ -CH ₂ -
	(CDCI3)	CO), 6.87 (s. 1H, CH of pyridine), $6.90-7.60$ (m. 4H aromatic protons).
		7.73 (s, 1H, NH).
X ₁₁	¹ HNMR	2.42 (s, 3H, CH ₃ at 6-position), 2.51 (s, 3H, CH ₃ , at 4-position), 2.81 (t, 2H,
	(CDCl ₃)	SCH ₂ CH ₂), 3.61(t, 2H, SCH ₂ CH ₂ CO), 6.79 (s, 1H, CH of pyridine), 7.14-
		7.27 (m, 6H, 4-aromatic protons, NH and CDCl ₃).
X ₁₂	¹ HNMR	2.42 (s, 3H, CH ₃ , at 6 position), 2.47 (s, 3H, CH ₃ at 4 position), 2.88 (t, 2H,
	(CDCl ₃)	SCH ₂ CH ₂), 3.59 (t, 2H,-SCH ₂ CH ₂ -CO), 6.80 (s, 1H, CH of pyridine), 7.10-
		1.55 (m, 5H, aromatic protons at 3,4 and 5-positions), 1.17 (s, 1H, NH).

absorption, 2220 cm⁻¹ for CN and at 1671-1661 cm⁻¹ for carbonyl absorption. Reaction of 3cyano-4,6-dimethylpyridine IV with POCl₃ on water-bath gave 2-chloro-3-cvano-4.6dimethylpyridine VII. The latter upon reaction with thiourea in ethanol for 3 hr. afforded the expected. 3-cvano-4,6-dimethylpyridine-2thione VIII. The mass spectrum of this compound is characterized by the appearance of molecular ion peak (M^+) at 164, the ¹HNMR showed singlet aromatic proton of pyridine at δ 6.69 ppm, the SH proton appear singlet at δ 13.80 ppm. Compound VIII when reacted with alcoholic KOH afforded the potassium salt IX, which when allowed to reacted with α chloroacetyl and β -chloropropionyl derivatives of some aromatic amines gave the expected thioethers, 3-cyano-4, 6-dimethyl-2-(substitutedthio) pyridines X_{1-12} . The IR spectra of these compounds showed the CN absorption at 2221 cm^{-1} and the NH absorption at 3320-3270 cm^{-1} . 1643-1594 cm⁻¹ for carbonyl absorption. ¹HNMR spectra of X showed the methylene group SCH₂CO- desheileded at δ 7.00-7.20 ppm and the pyridine proton at δ 6.78-7.15 ppm.

Anti-hyperlipidemic effect Induction of hyperlipidemia

Hyperlipidemia can be induced by three times weekly administration by gavage of 10

ml/kg body weight for two weeks of a cocktail containing in 1 L peanut oil: 100 gm cholesterol, 30 g propylthiouracil and 100 g cholic acid.¹¹ Rats were maintained at constant environmental condition throughout the whole experimental period.

Design of the experimental work

Thirty six of adult male rats, weighing 120-140 g, were divided into six groups (6 rats for each). The first group served as control group. The second group served as model group. The remaining groups from 3-6 were given an oral doses of the hyperlipidemic cocktail by gavage of 10 ml/kg body weight 3 times weekly for two weeks perior to the tested compounds (III₂, V_4 , X_1 and X_{12}) then blood samples of all groups were taken from the orbital fissures of the eye by using heparanized capillary tubes. After clotting of the blood, the samples were centrifuged for 15 min. at 3000 rpm. The above serum layer was decanted in other epindorf tubes and subjected for estimation lipid profil of (cholestyol, triglyceride HDL and LDL) using enzymatic kits methods. For total cholesterol CHOD-PAP. (SPINREACT), SPAIN. For triglyceride (GPO-POD. Ensimatica colorimetica) (SPINREACT) SPAIN, for HDL precipitant PEG 6000 (Dasa-Ragister), Roma.

Group	Control	Model	Compound	Compound	Compound	Compound
Lipids	Control	(Cocktail)	III_2	V_4	\mathbf{X}_{1}	X ₁₂
Total cholesterol	58.3±2.4	0.155 ± 14.0^{a}	75.6±8.1 ^b	71.9±4.2 ^b	71.1±3.8 ^b	63.5±0.9 ^b
Trigly- ceride	9.21±2.4	82.6±3.2ª	47.7±5.5 ^{ab}	54.5±1.2 ^{ab}	45.5 ± 1.5^{ab}	63.3±2.6 ^{ab}
HDL	8.42±2.0	31.7 ± 2.6^{a}	35.6 ± 4.6^{a}	26.9 ± 2.5^{a}	29.4 ± 1.7^{a}	28.2 ± 1.7^{a}
LDL	10.1±2.6	100.8 ± 17.4^{a}	30.5 ± 8.3^{b}	34.0±5.8 ^b	32.6±4.3 ^b	29.3±2.6 ^b

Table 5: Effect of the synthesized compounds III_2 , V_4 , X_1 and X_{12} on the hyperlipideamic rats.

Data are presented as M \pm SEM

a: Significant from control

b: Significant from model

Statistical analysis was done using one way ANOVA followed by Tukey-Kramer as post ANOVA test.

Description of results

Oral administration of hyperlipidemic cocktail to rats significantly increased the total cholesterol level by 265% compared with control group (Table 5, Fig 1). Oral administration of new synthesized hypolipidemic compounds III_2 , V_4 , X_1 and X_{12} . structurally related to Niacin (hypolipidemic agent) in a dose level of 400 mg/kg body weight daily for 7 days, significantly lowered the total cholesterol level by 49%, 46%, 46% and 41% respectively compared with the model group (Table 5, Fig. 1).

Fig. 1: Effect of some synthesized compounds on serum total cholesterol level.
Data were presented as mean ± SEM.
a: Significant from control.
b: Significant from model.

Concerning the triglyceride level, oral administration of the hyperlipidimic cocktail to rats significantly increased the serum triglyceride by 377% compared with control group. Oral injection of compounds (III₂, V₄, X_1 and X_{12}) significantly decreased serum triglyceride by 58%, 66%, 55% and 44% compared with the model group (Table 5, Fig. 2).

Also the serum HDL was increased by hyperlipidemic cocktail by 74% compared with control group. The previous compounds have no effect on HDL level compared with the model (Table 5, Fig. 3).

Similarly, the serum level of LDL was significantly increased by 100% compared with control group. Oral injection of compounds (III₂, V₄, X₁ and X₁₂) significantly decreased the serum LDL by 31%, 34%, 33% and 29% respectively compared with the model group but still higher than the normal control group (Table 5, Fig. 4).

b: Significant from model.

b. Significant from model.

Fig. 3: Effect of some synthesized compounds on serum HDL level.

Data were presented as mean \pm SEM.

a: Significant from control.

b: Significant from model.

Fig. 4: Effect of some synthesized compounds on serum LDL level.

Data were presented as mean \pm SEM. a: Significant from control.

b: Significant from model.

Discussion of antihyperlipidemic results

synthesized hypolipidimic The new compounds in this study had been found to decrease the serum levels of cholesterol. triglyceride, HDL and LDL. This results are in the same direction with the study of Tapan et al.¹² who reported that niacin in a dose level of 400-4000 mg/kg has been found to lower blood lipid. The mechanism underlying the cocktail induced-hyperlipideamia may be due to thiouracil contained in this cocktail has antithyroid effect, this leads to sensetization of blood vessels to the effect of adrenaline.¹² The underlying the mechanism synthetic blood levels compounds lowering of cholesterol, triglyceride HDL and LDL may be due to increase steroid excretion and inhibition of cholesterol synthesis from active acitate.^{13,14} In addition, nicotinic acid revealed significant antilipolytic effect by inhibiting the release of NEFA and glycerol from adipose tissues and decrease the synthesis and release of VLDL -TG from liver.¹⁵ Because our new synthesized compounds (III₂, V_4 , X_1 and X_{12}) have structuraly similarity to nicotinic acid we suggest that these compound lower blood lipid profil may be throughout the above mechanisms.

Conclusion

The new synthesized compounds (III₂, V_4 , X_1 and X_{12}) have marked lowering effects on serum cholesterol, triglyceride, HDL and LDL. Moreover they have the same relative potency in this manner.

REFERENCES

 J. B. John, C. L. William, F. L. George, S. P. Gerald, W. R. Andrew, L. E. Edward and H. Ralph, J. Med. Chem., 22 (11), 1284-1987 (1979).

- 2- J. B. John, L. E. Edward, H. Ralph, S. P. Gerald, G. A. Joseph, K. W. Burton, S. S. Charles and S. Alexander, J. Med. Chem., 23, 65-70 (1980).
- 3- E. M. David, J. B. John, C. R. William, F. L. Thomas, K. Mesler, G. F. Lundell, A. W. Raad, G. E. Dennis, A. R. Dwin, S. S. Charles and W. Michoel, J. Med. Chem., 26, 649-657 (1983).
- 4- A. N. Osman, M. M. Ismail and M. A. Barakat, Egypt. J. Pharm. Sci., 28, (1-4) 87-98 (1987).
- 5- J. L. Simonsen and M. Nayak, J. Chem. Soc., 107, 792-8 (1915).
- 6- A. N. Osman, M. A. Shaban, Mohsen M. Ismail and A. A. El-Gendy, Bull Fac. Pharm. Cairo, Univ., 28, 2, 25-28 (1990).
- 7- Mohsen M. Ismail and K. M. Ghoneim, Bull. Fac. Pharm. Cairo, Univ., 32 (2), 171-175, (1994).
- 8- G. Karl and J. Hans, Ger (East) 107, 287 (Cl.C 07d) 20 Jul.,1974, Appl. 172 688,01 Aug (1973).??
- 9- H. Jahine, H. A. Zaher, A. A. Sayed and M. J. F. Seada, Prakt. Chemie, 316, 2, 337-343 (1974).
- 10- S. El-Mogahazy, Egypt. J. Pharm. Sci., 33, (3-4), 527-538 (1992).
- L. C. Fillios, Andrus Stb, G. V. Mann and F. J. Stare, J. Exper. Med., 104, 539 (1956).
- 12- K. Tapan, Basu and Sarabjit Mann, J. Nutr. 127 (1), 117-121 (1997).
- 13- S. M. Grundy, H. Y. I. Mok, L. Zech, M. Berman, J. Lipid Res., 22, 24-26 (1981).
- 14- L. Kaijser, B. Eklund, A. G. Olson and L. A. Carlson, Med. Biol., 57, 114-117 (1979).
- 15- G. P. Ellis and G. B. West, "Progress in Medicinal Chemistry 11", North-Holland, Publishing company Amsterdam oxford, 1975, p. 124.