IN VITRO RELEASE OF DIAZEPAM FROM DIFFERENT SUPPOSITORY FORMULATIONS.

Sayed Ismail and Schair El-Shanawany

Dept. of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt.

ABSTRACT

The effect of suppository vehicles, drug concentrations, liquid additives and some nonionic surfactants on the in vitro release of diazepam from different suppository formulation were investigated. The obtained data revealed that the drug release is significantly higher from suppository prepared using PEG than the other formulations. The drug release from oleaginous base was related inversely to its partition coefficient and the melting range of the tested oleaginous bases. The incorporation of some liquid additives (10%) was found to improve the release pattern of the drug from a PEG base. The degree of improvement is correlated well to the solubility of the drug in the utilized additives. The data, also, reveal that the release rate is directly proportional to the drug concentration. The incorporation of nonionic surfactants into Witexpol H15 in a 5% concentration was found to increase the release rate of diazepam. The enhancing effect was found to be dependent on the chemical structure of the surfactants. The release rate of medicament from different solid nonionic surfactants, as suppository bases, was also studied. The magnitude of drug release was markedly reduced as compared with PEG bases.

INTRODUCTION

The importance of drug release from a variety of suppository bases has been recognised by several authors who attempted to identify the physicochemical properties of the drug and the bases that greatly influence the rectal absorption. Recently, the rectal therapy has become more popular since the side effect of the I.M. injections can be circumvented, especially in the pediatric population.

The rectal absorption of sodium ampicillin and other β-lactam antibiotics in rabbits and rats was enhanced by the addition of N-acyl collagen peptide into the suppository vehicle. The rectal absorption of acetaminophen from an aqueous solution and PEG suppository bases was studied and a relationship was observed between acetaminophen bioavailability and the dielectric properties of the vehicles utilized. The effect of particle size and drug concentration on the in vitro release of noramidopyrine methanesulphonate sodium from witexpol H15 was studied and the data revealed that the finer drug particle size the less its release and the increase in medicament concentration the higher drug release.

The in vitro release of chlordiazepoxide hydrochloride from a variety of suppository bases was studied. The authors found that the extent of drug release was dependent on the type of used bases.

Diazepam is a well accepted drug for the treatment of status epilepticus. Status epilepticus is a serious and often a life-threatening emergency, which requires prompt
treatment to minimize mortality as well as reducing neurological sequelae caused by prolonged seizure activity11,12. Current therapy by diazepam requires rectal or i.m. administration of the drug to achieve rapid onset of the required effect. The absorption characteristics of diazepam following intranasal administration was determined to assess the suitability of this approach for the treatment of status epilepticus in children13. The rectal therapy of benzodiazepines namely; diazepam was studied in humans and experimental animals.

The bioavailability of diazepam from rectal solution was studied by Moolenar et al14. They found that, the peak concentration was observed at 15 min. and the concentration was constant for about 3 hrs. The rectal absorption of lorazepam from fatty and water soluble suppository bases was studied and compared with the oral solution15.

Diazepam is a benzodiazepine derivative, structurally and pharmacologically related to chlor diazepoxide. It is more potent than chlor diazepoxide. Due to its poor water solubility, several attempts have been done to improve its dissolution rate16 and aqueous solubility17.

A survey of the literature, revealed that there is no attempt was done to formulate diazepam suppositories. Therefore, the aim of the present article was to study the \textit{in vitro} release of diazepam from different suppository formulations.

EXPERIMENTAL

Materials:

Diazepam (Hoffman La Roche Inc., Nutley, N.J.); Cacao butter (B.P. grade); Witepsol H12, H15, H9 and E75 (Nober Dynnait, Germany); Massa estarimum B, C and BC (Nober Dyn-
mait, Germany); PEGs 300, 1000, 1540, 4000 and 6000 (Fluka AG, Switzerland); Glycerol (BDH, U.K.); Poloxamers 182, 402 and 407 (BASF, USA); Myris 53, 59 and Brijes 35,58 (ICI, USA); Standarded cellulose dialysis membrane, spectrapor M.W. cutoff 12000-14000 (Fischer Sci. Co., U.K.) All other chemicals were of analytical or reagent grade and were used without further purification.

Procedure:

1. **Preparation of diazepam suppositories.**

 The suppositories were prepared employing the fusion method. Each suppository was prepared in a manner to contain 20 mg of drug. Generally, the suppository ingredients were mixed and melted over a water bath. The drug was dispersed or dissolved in the molten base and then poured in a suppository mould (1 gm) and allowed to solidify at 20°C. The suppositories were removed from the mould and stored in a closed container at 10°C for 2-3 days prior to evaluation, the suppositories were allowed to stand for 4-6 hours at room temperature.

2. **Release of diazepam from suppositories.**

 The procedure can be summarized as follows: the cellophane membrane was first soaked in distilled water for about 24 hours prior to use. The membrane was dried between two filter papers, stretched over the lower end of an open ended glass cylinder, i.d.-22 mm, with the aid of a cotton thread and this acts as a donor. The donor was located vertically in a 50 ml beaker containing 20 ml of McIlvaine’s phosphate buffer at pH 7.5 (acceptor). Two milliliters of the buffer were introduced into the donor compartment. It is quite worth to note that the donor was placed into the acceptor in a manner that the membrane was just below the
upper surface of the release medium. The whole dialysing unit was placed into a mechanically shaken water bath, the rate of shaking was adjusted at 25 strokes/minute. The water bath was adjusted at 37°C. When a thermal equilibrium has been attained, one suppository of the tested suppository formulation, accurately weighed, was introduced into the donor compartment. At specified time intervals, a of the release medium was withdrawn and immediately replaced with an equal volume of the same buffer at the same temperature. The amount of drug release was estimated spectrophotometrically by measuring the absorbance at 231 nm after appropriate dilution with distilled water against a blank similarly treated. The cumulative amount of the drug dialysed into the acceptor was calculated. It should be noted that each experiment was done four times and the average amount released was calculated.

3. Determination of partition coefficient of diazepam.

Ten grams of the tested suppository base were accurately weighed and introduced into a glass stopped tube, 50 ml in capacity, followed by 10 ml of diazepam solution (50 µg/ml) in Melliave's phosphate buffer at pH 7.8. The tubes were tightly closed and allowed to rotate at 50 rpm in a thermostatically controlled water bath. The temperature was adjusted at 37°C. The tubes were allowed to rotate for 8 hrs. This time was found to be sufficient to attain equilibrium. The tubes were removed and allowed to stand vertically for one hour to allow complete separation of the two phases. The tubes were placed into the refrigerator and stand vertically for further one hour to be completely solidified. The aqueous phase was then filtered. The amount of the drug retained in the aqueous phase was determined by measuring the absorbance at 231 nm against a suitable blank. The amount of the drug partitioned into the oily phase was calculated by subtraction. The partition coefficient, K, could be calculated from the equation:

$$K = \frac{C_o}{C_w}$$

Where, C_o is the amount of the drug in the oily phase and C_w is that retained in the aqueous phase.

4. Solubility studies.

The solubility of drug was carried out according to Higuchi and Connors technique. Excess amount of the medicament was accurately weighed and added to glass stopped tubes, 50 ml in capacity, containing 20 ml of distilled water or water containing 10% of PEG 300, glycerol or propylene glycol. The tubes were rotated on a mechanical spindle at 37°C, at 50 rpm, for 48 hours. This time was sufficient to ensure solubility equilibrium for the tested solvents. After attainment of the equilibration, the contents of the tubes were filtered. Aliquot portions of the supernatant or the filtrate were properly diluted with water and analysed for the drug content spectrophotometrically at 231 nm.

RESULTS AND DISCUSSION

The in vitro release pattern of diazepam from different suppository bases was investigated at 37°C. Figure 1 shows the obtained data for the drug release from witepsol bases. From this figure, it could be observed that witepsol H5 exhibited the higher release rate. The tested bases could be ranked in the following order according to their ability to release the drug: witepsol H5 > witepsol H2 > witepsol H7 > witepsol E7. This finding is attributed to both chemical composition and the melting range of the tested bases (Table 1).
The affinity of diazepam towards the tested oleaginous bases followed through determination of the partition coefficient between these bases and Mollvaine's buffer at pH 7.5. The values of partition coefficient, K, are presented in Table 2. From this table, a slight difference between the K values could be observed. Generally, the partition coefficient values could be arranged as witepsol H37 < witepsol E75 < witepsol H125 < witepsol H12. The data reveal that the release rate of diazepam from witepsol bases having lower melting range (e.g., witepsol H125 and witepsol H125) was higher than that from the other candidate having higher melting range; witepsol H37 and witepsol H12.

On comparing the release pattern of drug from witepsol H37 and witepsol H12, it was explored that the release rate is inversely proportional to the partition coefficient. Also, the release rate profile from witepsol H37 and witepsol H12 could be explained on the same assumption.

Table 2. Partition Coefficient of Diazepam, K, Between Oleaginous Suppository Bases and Phosphate Buffer pH 7.5

<table>
<thead>
<tr>
<th>Suppository base</th>
<th>K</th>
<th>45.0</th>
<th>60.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocoa butter</td>
<td>2.044</td>
<td>0.37</td>
<td>1.67</td>
</tr>
<tr>
<td>Witepsol H12</td>
<td>1.746</td>
<td>0.32</td>
<td>1.22</td>
</tr>
<tr>
<td>Witepsol H55</td>
<td>1.572</td>
<td>0.25</td>
<td>1.18</td>
</tr>
<tr>
<td>Witepsol E75</td>
<td>1.540</td>
<td>0.15</td>
<td>1.43</td>
</tr>
<tr>
<td>Massa esterainum B</td>
<td>1.948</td>
<td>0.08</td>
<td>2.09</td>
</tr>
<tr>
<td>Massa esterainum C</td>
<td>1.931</td>
<td>0.05</td>
<td>2.59</td>
</tr>
<tr>
<td>Massa esterainum BC</td>
<td>1.990</td>
<td>0.07</td>
<td>2.69</td>
</tr>
</tbody>
</table>

The in vitro release of the medicament from different PEG suppository bases was also studied. The composition of these vehicles is surveyed in Table 3. Figures 3 and 4 reveal that the composition of the PEG base affects, markedly, the release rate. The appreciable differences between the release rates from the tested PEG bases may be predicted from a knowledge of the physico-chemical properties the PEG bases. The data, also, show that when mixtures of PEGs were used, the rate of release increase as the percentage of PEG 1540 was increased, Table 3. The same finding was attained when mixtures of PEG 1000 and PEG 4000 were used as suppository vehicles. The results obtained indicate that the character of polyethylene glycol base is the most influential.

Table 3. Composition of PEG Suppository Bases.

<table>
<thead>
<tr>
<th>Formula</th>
<th>PEG 1000</th>
<th>PEG 1540</th>
<th>PEG 4000</th>
<th>PEG 5200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>--</td>
<td>25</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>200</td>
</tr>
</tbody>
</table>
The significant increase in the release rate of drug from PEG bases, as compared with oleaginous bases, is attributable to an increase in the diazepam solubility in presence of the tested PEG bases. However, PEG 4000 was found to increase the aqueous solubility as well as the dissolution rate of diazepam. The data can also be treated according to the fact that the lower molecular weight PEG is more water soluble than that of higher molecular weight. Accordingly, as the percentage of either PEG 1000 or 1540 was increased, Table 3, the dissolution rate of drug from the tested base will be improved. Generally, the release of drug from water soluble bases is superior than from fatty type. Among the tested formulations, PEG 4 exhibited the higher release rate.

The influence of liquid additives on the release behaviour of diazepam from PEG 4000 and PEG 6000 (1:1) base was studied Figure 5. The appreciable differences between the release rates of diazepam could be attributed to the variable effects of those liquid additives on the aqueous solubility of drug.

Table 4 shows the solubility of diazepam in water containing 10% of each liquid additive. From this table, the tested additives could be ranked in the following decreasing order according to their ability to solubilize diazepam: Propylene glycol > PEG 300 > glycerol. This improving effect in the drug solubility could be taken as a parameter to explain the release rate pattern. Inspection of Figure 5 reveals that the increase in the amount of drug released from this PEG base is correlated with the solubilizing power of those additives.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility ± s.d. (mg/ml)</th>
<th>C.V. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>72.04</td>
<td>0.73</td>
</tr>
<tr>
<td>Water + PEG 340</td>
<td>177.10</td>
<td>0.33</td>
</tr>
<tr>
<td>Water + Propylene glycol</td>
<td>257.60</td>
<td>0.82</td>
</tr>
<tr>
<td>Water + Glycerol</td>
<td>103.10</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Figure 6 reveals the release pattern of diazepam from Brij 35 and Brij 58 suppository bases. From the data obtained, it could be observed that the release of diazepam from Brij 35 is faster than that from Brij 58. Figure 7 illustrate that the suppository bases prepared from Myrij 59 exhibited a higher release rate than that prepared with Myrij 57. A comparison between those bases indicates that Brij 35 is far superior to the other tested surfactant bases.

Inspection of the results for the effect of drug concentration on the amount of drug released reveals that a higher release was attained as the drug concentration was increased, Figure 6. The drug was used in a concentration range of 10-30 mg/g suppository base. This finding could be explained on the basis of Fick's law; i.e. as the concentration gradient increases, the release rate will be consequently increased. This study was carried out employing PEG as a suppository base. On comparing the release pattern of diazepam from two different classes of water soluble suppository bases i.e. PEG and nonionic surfactant bases, it should be pointed out that the amount of the drug released in case of PEG bases is much greater than that from the surfactant bases. This could be explained on the assumption that when these surfactant completely dissolved in water present in the donor, they will dis
solve excess amount of the drug through micellar solubilization. The solubilized drug molecules will be partitioned between the micellar and intermicellar phases. Diazepam, a poorly water-soluble drug, will be partitioned in favour of the micellar phase. Accordingly, the concentration of the free drug in the intermicellar phase, which is available for dialysis, will be reduced. Another explanation for such observation is that diazepam will react with the surfactant monomers resulting in the formation of drug surfactant complex which is not ready to diffuse through the cellophane membrane.

The incorporation of 5% w/w of some selected nonionic surfactants into witepsol H35 was found to modify the release rate of diazepam. The surfactants tested were Poloxamer 182, Poloxamer 402 and Poloxamer 407. The data obtained revealed that all the tested poloxamer improve the release rate. (Figure 9). This improving effect may be due to an increase in the dissolution rate of the drug due to the presence of such surfactants. The higher enhancing effect was attained in the presence of poloxamer 407. The lower effect was produced by poloxamer 402 while an intermediate effect was obtained with poloxamer 182.

In conclusion, the combined factors that affect the in vitro availability of diazepam from suppositories are: a) the type and chemical composition of the tested suppository base, b) the partition coefficient of the drug, c) the solubilizing effect of the surfactant and d) formation of a complex between the drug molecule and the surfactant monomers.
Fig. 4. In-vitro Release of Diazepam from PEG Suppository Bases; (4,5,6).

Fig. 5. In-vitro Release of Diazepam from PEG Suppository Bases (1,2,3).
Fig. 7. In-vitro Release of Diazepam from Myrj 51 and 59 as Suppository Bases.

Fig. 6. In-vitro Release of Diazepam from Brij 35 and 50 as Suppository Bases.

Fig. 5. Effect of Liquid Additives on the In-Vitro Release of Diazepam from PEG Base.
Fig. 9. Effect of Different Surfactants on the In-vitro Release of Diazepam from Witepsol H15.

Fig. 8. Effect of Diazepam Concentration on In-vitro Release of Drug from Suppositories.
REFERENCES

دراسة معملية لانطلاق عقارب الديازيبام من أقسام شرية في صياغات مختلفة

س. أسامة محمد - سهير مصطفى حسن الشناوي

تم الحصول علىtrad - كلية الصيدلة - جامعة أسيوط

استخدمت الدراسة صياغة عقارب الديازيبام في صورة أقسام شرية رئد استخدمت
في هذه الدراسة العديد من القواعد في القاعدة الذاتية في الباب وكذلك مخاليط من
قاعدة الويتسبول و 10 و 21 من مبتنيات القطاع الغير متائف و تم تقييم القيم المعطاة
بعض منشطات القطاع الغير متائف. تركز العطار،

اء. بعض البيانات مثل الجلدل و نسبة أثيلين الجليكول و 3% والروبلين
الجليكول وكذلك أضافة بعض منشطات القطاع الغير متائف على معدلات انطلاق
المقار من هذه القواعد المحذرة.

ولقد أوضح التأثير ما يلي:

1. القواعد المحذرة من عدد أثيلين الجليكول تعطي معدلات عالية لانطلاق المقار

2. أن معدل انطلاق العطار يتسبب طرديا مع تركيز قي القواعد المستخدمة.

3. أن نسبة أثيلين الجليكول و نسبة أثيلين والروبلين جليكول بنسبة 60

إلى القاعدة الكبيرة من خليط عدد أثيلين الجليكول 8% و 6% (1) يزيد من

معدل انطلاق العطار.

4. أن نسبة منشطات القطاع الغير متائف بنسبة 6% إلى قاعدة الويتسبول هو ما يزيد

من معدل انطلاق العطار.

- استخدام بعض منشطات القطاع الغير متائف كقاعدة يتقلل من انطلاق العطار إذا

ما قورن بانطلاق من قاعدة عدد أثيلين الجليكول.

Received in 8/9/1992 & Accepted in 1/12/1992